Uncovering Hidden Patterns of Molecular Recognition

Total Page:16

File Type:pdf, Size:1020Kb

Uncovering Hidden Patterns of Molecular Recognition UNCOVERING HIDDEN PATTERNS OF MOLECULAR RECOGNITION By Sebastian Raschka A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Biochemistry and Molecular Biology – Doctor of Philosophy Quantitative Biology – Dual Major 2017 ABSTRACT UNCOVERING HIDDEN PATTERNS OF MOLECULAR RECOGNITION By Sebastian Raschka It happened in 1958 that John Kendrew’s group determined the three-dimensional structure of myoglobin at a resolution of 6 Å. This first view of a protein fold was a breakthrough at that time. Now, more than half a century later, both experimental and computational techniques have substantially improved as well as our understanding of how proteins and ligands interact. Yet, there are many unanswered questions to be addressed and patterns to be uncovered. One of the most pressing needs in structural biology is the prediction of protein-ligand complexes in aiding inhibitor and drug discovery, ligand design, and studies of catalytic mechanisms. Throughout the past few decades, improvements in computational technologies and insights from experimental data have converged into numerous protein-ligand docking and scoring algorithms. However, these methods are still far from being perfect, and only minimal improvements have been made in the past few years. That might be because current scoring functions regard individual intermolecular interactions as independent events in a binding interface. This thesis addresses existing shortcomings in the conventional view of protein-ligand recog- nition by characterizing interactions as patterns. Finding that binding rigidifies protein-ligand complexes has led to our design of a robust scoring function that predicts native protein-ligand complexes through the coupling of interactions that rigidifies the protein-ligand interface. Also, the analysis of a non-homologous set of protein-ligand complexes has revealed that binding interfaces are polarized – surprisingly, proteins donate twice as many hydrogen bonds to ligands as they accept, on average, and the opposite is true for ligands. A more in-depth analysis of atom type distributions among H-bond donor and acceptor atoms showed that the discovered trends contain surprisingly strong patterns that are also predictive of native protein-ligand binding. Both the coupling of interactions as well as the distribution of hydrogen bond patterns are currently not captured by other methods and provide new information for the prediction and design of ligands. In the absence of the protein receptor structure, our results show that data from experimental assays can be mined to identify functional group patterns on ligands that are predictive of biological activity. Additionally, we present methods to use functional group patterns to improve the success rate of ligand-based virtual screening. Applied to G protein-coupled receptor inhibitor discovery, this approach has led to the discovery of a potent inhibitor that nullifies the biological response and presents the first instance where virtual screening has been used for aquatic invasive species control. Finally, to overcome current challenges in drug discovery for protein-protein interfaces, a new method for identifying small molecules that block protein-protein interactions is presented. We developed and applied an epitope-based virtual screening workflow to find inhibitors of focal adhesion kinase interactions involved in cancer metastasis. In sum, this work presents both novel insights into the coupling among and trends in intermolec- ular interactions as well as methods to predict the biological activity of ligands based on patterns of functional groups. Along with the insights gained in this work, computational tools and software for measuring the rigidification that is characteristic of native protein-ligand complexes, analyzing H-bond patterns rigorously, and screening millions of small molecules in hypothesis-driven ligand discovery have been developed and are now being made available to other scientists. Copyright by SEBASTIAN RASCHKA 2017 This thesis is dedicated to my mom, dad, and sister. Thank you for always believing in me. v ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Dr. Leslie A. Kuhn, for all her guidance throughout my Ph.D. studies and the opportunity to work on many interesting and exciting projects in her lab. My Ph.D. studies have been the biggest adventure of my life thus far – something I will always remember as one of the most profound experiences of my life. I would also like to thank my guidance committee, Dr. Michael Feig, Dr. David N. Arnosti, Dr. C. Titus Brown, and Dr. Jian Hu. Having such a great committee really helped me with staying on track throughout the last five years, and I appreciate all the helpful advice, constructive critique, and encouraging words. Special thanks go to Jessica Lawrence, Becky Conat Mansel, and Jeannine Lee, who helped me navigate through grad school. Knowing that someone was always there to help with various forms and paperwork was invaluable. I would also like to say thanks to Dr. John J. LaPres, Dr. Jon M. Kaguni, and Dr. R. Michael Garavito, who recruited me into the BMS, BMB, and Quantitative Biology programs, and who have done a remarkable job making those programs a very worthwhile experience. A warm thanks goes to Vahid Mirjalili for being such a good friend throughout these years at MSU: exploring the Michigan rivers on kayaks, traveling to conferences, being witness to my friend’s wedding, and collaborating on countless different projects – it was always fun! I am grateful to my grandparents, uncle, sister, mom, and dad, who have always been there for me with moral support. Although I am sad and very sorry that I missed countless birthday parties and other celebrations, I am very grateful to have such a great family who always understood and always believed in me. Last but not least, I would like to thank all my friends and fellow students at MSU. Thank you for five amazing years! vi TABLE OF CONTENTS LIST OF TABLES ....................................... xi LIST OF FIGURES ....................................... xii CHAPTER 1 INTRODUCTION ............................... 1 CHAPTER 2 PROTEIN-LIGAND INTERFACES ARE POLARIZED: DISCOVERY OF A STRONG TREND FOR INTERMOLECULAR HYDROGEN BONDS TO FAVOR DONORS ON THE PROTEIN SIDE WITH IMPLICATIONS FOR PREDICTING AND DESIGNING LIGAND COMPLEXES ...... 5 2.1 Abstract . 6 2.2 Introduction . 6 2.3 Methods . 9 2.3.1 Dataset . 9 2.3.2 Protonation . 13 2.3.3 Optimization of proton orientation . 14 2.3.4 Influence of partial charges . 15 2.3.5 Hbind software . 15 2.3.6 Identification of ligand H-bonding patterns . 16 2.3.7 Software for statistical analyses . 19 2.3.8 Visualization and plotting software . 19 2.4 Results and Discussion . 19 2.4.1 Are donor groups on proteins preferred in H-bonding to biological ligands? 19 2.4.2 Can the observed trends in interfacial polarity, with H-bonds tending to be formed by donors on the protein side of the interface interacting with acceptors on the ligand side, be explained by the prevalence of binding-site protons versus lone pairs? . 22 2.4.3 Do certain residues predominate in the observed preference for proteins to donate H-bonds to ligands? . 23 2.4.4 When protein and ligand atoms are categorized according to their chem- istry, are H-bonding preferences between proteins and ligands fundamen- tally similar or different? . 25 2.4.5 Do different classes of ligand differ in their tendency to accept versus donate H-bonds? . 27 2.4.6 Can orientational selectivity of the biological ligand explain the prefer- ence for proteins to donate H-bonds to ligands? . 30 2.4.7 Do protein-bound metal ions contribute significantly to ligand binding, and how does their bond chemistry relate to observed trends in H-bonding? 33 2.4.8 How do these results relate to Lipinski’s rule of 5 for drug-likeness in small molecules? . 34 vii 2.4.9 Can the observed H-bonding trends be used to predict protein-ligand interactions? . 35 2.5 Conclusions . 39 2.6 Acknowledgements . 42 CHAPTER 3 DETECTING THE NATIVE LIGAND ORIENTATION BY INTERFA- CIAL RIGIDITY: SITEINTERLOCK ..................... 43 3.1 Abstract . 44 3.2 Introduction . 44 3.2.1 Stabilization of protein complexes by ligand binding . 44 3.2.2 Computational probes of protein rigidity and flexibility . 46 3.2.3 Computational detection of protein-ligand interfacial rigidification . 47 3.3 Materials and Methods . 49 3.3.1 Protein-ligand complexes analyzed . 49 3.3.2 Sampling complexes by molecular docking . 51 3.3.3 Evaluating correlation between scoring functions . 53 3.3.4 Rigidity analysis . 53 3.3.5 SiteInterlock interfacial rigidity score . 58 3.3.6 Other scoring functions . 59 3.4 Results and Discussion . 60 3.4.1 Detecting structural rigidification upon protein-ligand complex formation . 60 3.4.2 Interfacial rigidity as a signature of native protein-ligand interaction . 66 3.5 Conclusions . 70 3.6 Acknowledgements . 71 CHAPTER 4 ENABLING THE HYPOTHESIS-DRIVEN PRIORITIZATION OF LIG- AND CANDIDATES IN BIG DATABASES: SCREENLAMP AND ITS APPLICATION TO GPCR INHIBITOR DISCOVERY FOR INVASIVE SPECIES CONTROL ............................. 72 4.1 Abstract . 73 4.2 Introduction . 73 4.2.1 Virtual screening for inhibitor discovery . 73 4.2.2 Pioneering aquatic invasive species control and GPCR inhibitor discovery through virtual screening . 76 4.2.3 G-protein coupled receptors and olfactory receptors . 77 4.3 Methods . 78 4.3.1 Driving structure-activity hypothesis development by structural modeling of 3kPZS-receptor interactions . 78 4.3.2 Development of Screenlamp, a hypothesis-based screening toolkit . 79 4.3.3 Preparation of millions of drug-like molecules for ligand-based screening . 82 4.3.4 Identification of incorrect steroid substructures in molecular database . 84 4.3.5 Step 1: Hypothesis-based molecular filtering . 84 4.3.6 Step 2: Sampling favorable molecular conformations . 86 4.3.7 Generation of overlays to compare molecular shape and charge distribu- tion with a known ligand .
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0143878 A1 Bhat Et Al
    US 20070143878A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0143878 A1 Bhat et al. (43) Pub. Date: Jun. 21, 2007 (54) NUCLEC ACID MOLECULES AND OTHER of application No. 09/198.779, filed on Nov. 24, 1998, MOLECULES ASSOCATED WITH THE now abandoned. TOCOPHEROL PATHWAY Said application No. 09/233,218 is a continuation-in part of application No. 09/227,586, filed on Jan. 8, (76) Inventors: Barkur G. Bhat, St. Louis, MO (US); 1999, now abandoned. Sekhar S. Boddupalli, Manchester, MO Said application No. 09/233,218 is a continuation-in (US); Ganesh M. Kishore, Creve part of application No. 09/229,413, filed on Jan. 12, Coeur, MO (US); Jingdong Liu, 1999, now abandoned. Ballwin, MO (US); Shaukat H. Rangwala, Ballwin, MO (US); (60) Provisional application No. 60/067,000, filed on Nov. Mylavarapu Venkatramesh, Ballwin, 24, 1997. Provisional application No. 60/066,873, MO (US) filed on Nov. 25, 1997. Provisional application No. 60/069.472, filed on Dec. 9, 1997. Provisional appli Correspondence Address: cation No. 60/074,201, filed on Feb. 10, 1998. Pro ARNOLD & PORTER, LLP visional application No. 60/074.282, filed on Feb. 10, 555 TWELFTH STREET, N.W. 1998. Provisional application No. 60/074,280, filed ATTN IP DOCKETING on Feb. 10, 1998. Provisional application No. 60/074, WASHINGTON, DC 20004 (US) 281, filed on Feb. 10, 1998. Provisional application No. 60/074,566, filed on Feb. 12, 1998. Provisional (21) Appl. No.: 11/329,160 application No. 60/074,567, filed on Feb. 12, 1998.
    [Show full text]
  • 102 4. Biosynthesis of Natural Products Derived from Shikimic Acid
    102 4. Biosynthesis of Natural Products Derived from Shikimic Acid 4.1. Phenyl-Propanoid Natural Products (C6-C3) The biosynthesis of the aromatic amino acids occurs through the shikimic acid pathway, which is found in plants and microorganisms (but not in animals). We (humans) require these amino acids in our diet, since we are unable to produce them. For this reason, molecules that can inhibit enzymes on the shikimate pathway are potentially useful as antibiotics or herbicides, since they should not be toxic for humans. COO COO NH R = H Phenylalanine 3 R = OH Tyrosine R NH3 N Tryptophan H The aromatic amino acids also serve as starting materials for the biosynthesis of many interesting natural products. Here we will focus on the so-called phenyl-propanoide (C6-C3) natural products, e.g.: OH OH OH HO O HO OH HO O Chalcone OH O a Flavone OH O OH O a Flavonone OH OH Ar RO O O O HO O O OH O OR OH Anthocyanine OH O a Flavonol Podophyllotoxin MeO OMe OMe OH COOH Cinnamyl alcohol HO O O Cinnamic acid OH (Zimtsäure) Umbellierfone OH a Coumarin) MeO OH O COOH HO Polymerization OH Wood OH HO OH O OH MeO OMe Shikimic acid O HO 4.2. Shikimic acid biosynthesis The shikimic acid pathway starts in carbohydrate metabolism. Given the great social and industrial significance of this pathway, the enzymes have been intensively investigated. Here we will focus on the mechanisms of action of several key enzymes in the pathway. The following Scheme shows the pathway to shikimic acid: 103 COO- COO- Phosphoenolpyruvate HO COO- 2- O O3P-O 2- O3P-O DHQ-Synthase
    [Show full text]
  • 8.2 Shikimic Acid Pathway
    CHAPTER 8 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORAromatic SALE OR DISTRIBUTION and NOT FOR SALE OR DISTRIBUTION Phenolic Compounds © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER OUTLINE Overview Synthesis and Properties of Polyketides 8.1 8.5 Synthesis of Chalcones © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 8.2 Shikimic Acid Pathway Synthesis of Flavanones and Derivatives NOT FOR SALE ORPhenylalanine DISTRIBUTION and Tyrosine Synthesis NOT FOR SALESynthesis OR DISTRIBUTION and Properties of Flavones Tryptophan Synthesis Synthesis and Properties of Anthocyanidins Synthesis and Properties of Isofl avonoids Phenylpropanoid Pathway 8.3 Examples of Other Plant Polyketide Synthases Synthesis of Trans-Cinnamic Acid Synthesis and Activity of Coumarins Lignin Synthesis Polymerization© Jonesof Monolignols & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Genetic EngineeringNOT FOR of Lignin SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural Products Derived from the 8.4 Phenylpropanoid Pathway Natural Products from Monolignols © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 119 © Jones & Bartlett Learning, LLC.
    [Show full text]
  • Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin
    UC San Diego Research Theses and Dissertations Title Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin Permalink https://escholarship.org/uc/item/21b965z8 Author Schultz, Andrew W. Publication Date 2010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Andrew William Schultz Committee in charge: Professor Bradley Moore, Chair Professor Eric Allen Professor Pieter Dorrestein Professor William Fenical Professor William Gerwick 2010 Copyright Andrew William Schultz, 2010 All rights reserved. The Dissertation of Andrew William Schultz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Chair University of California, San Diego 2010 iii DEDICATION To my wife Elizabeth and our son Orion and To my parents Dale and Mary Thank you for your never ending love and support iv TABLE OF CONTENTS Signature Page ....................................................................................................
    [Show full text]
  • Bactrev00065-0077.Pdf
    BACnEIUOLOGICAL REVIEWS, Dec. 1968, p. 465-492 Vol. 32, No. 4, Pt. 2 Copyright © 1968 American Society for Microbiology Printed in U.S.A. Pathways of Biosynthesis of Aromatic Amino Acids and Vitamins and Their Control in Microorganisms FRANK GIBSON AND JAMES PITTARD John Curtin School of Medical Research, Australian National University, Canberra, Australia, and School of Microbiology, University of Melbourne, Australia INTRODUCTION................................................................ 465 INTERMEDIATES IN AROMATIC BIOsYNTHESIS ...................................... 466 Common Pathway ........................................................... 466 Tryptophan Pathway ........................................................ 468 Pathways to Phenylalanine and Tyrosine ........................................ 469 Pathway to 4-Aminobenzoic Acid.............................................. 469 Intermediates in Ubiquinone Biosynthesis ....................................... 470 Intermediates in Vitamin K Biosynthesis ........................................ 471 Pathways Involving 2,3-Dihydroxybenzoate ..................................... 472 Other Phenolic Growth Factors ............................................... 473 ISOENZYMES AND PROTEIN AGGREGATES CONCERNED IN AROMATIC BiosYNTHESIS ........ 474 Common Pathway ........................................................... 474 Tryptophan Pathway ......................................................... 474 Phenylalanine and Tyrosine Pathways .........................................
    [Show full text]
  • Biochemical Investigations in the Rare Disease Alkaptonuria: Studies on the Metabolome and the Nature of Ochronotic Pigment
    Biochemical Investigations in the Rare Disease Alkaptonuria: Studies on the Metabolome and the Nature of Ochronotic Pigment Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy by Brendan Paul Norman September 2019 ACKNOWLEDGEMENTS It is hard to describe the journey this PhD has taken me on without reverting to well-worn clichés. There has been plenty of challenges along the way, but ultimately I can look back on the past four years with a great sense of pride, both in the work presented here and the skills I have developed. Equally important though are the relationships I have established. I have lots of people to thank for playing a part in this thesis. First, I would like to thank my supervisors, Jim Gallagher, Lakshminarayan Ranganath and Norman Roberts for giving me this fantastic opportunity. Your dedication to research into alkaptonuria (AKU) is inspiring and our discussions together have always been thoughtful and often offered fresh perspective on my work. It has been a pleasure to work under your supervision and your ongoing support and encouragement continues to drive me on. It has truly been a pleasure to be part of the AKU research group. Andrew Davison deserves a special mention - much of the highs and lows of our PhD projects have been experienced together. Learning LC-QTOF-MS was exciting (and continues to be) but equally daunting at the start of our projects (admittedly more so for me as a Psychology graduate turned mass spectrometrist!). I am very proud of what we have achieved together, largely starting from scratch on the instrument, and we are continuing to learn all the time.
    [Show full text]
  • Falsi Promotoren: Dr.Ir
    f G /UfOo£fo\( ^° BACTERIAL FORMATION OF HYDROXYLATED AROMATIC COMPOUNDS CENTRALE LANDBOUWCATALOOUS 0000 0212 9613 falsi Promotoren: dr.ir. J.A.M, de Bont, hoogleraar in de industriële microbiologie dr.ir. J. Tramper, hoogleraar in de bioprocestechnologie puoj^o'. (Z oG W.J.J, van den Tweel BACTERIAL FORMATION OF HYDROXYLATED AROMATIC COMPOUNDS Proefschrift ter verkrijging van de graad van doctor in de landbouwwetenschappen, op gezag van de rector magnificus, dr. C.C. Oosterlee, in het openbaar te verdedigen op vrijdag 8 april 1988 des namiddags te vier uur in de aula van de Landbouwuniversiteit te Wageningen M'U2,si ^ssr* ^cS^'i l^ofe STELLINGEN 1. Zowel de resultaten als de conclusies van Tokarski et al. betreffende de vorming van (+)-2-aminobutyraat uit 2-ketobutyraat met behulp van een transaminase zijn ernstig aan bedenkingen onderhevig. - Tokarski, Z., Klei, H.E. & Berg, C.M. (1988). Biotechnol. Lett. 10,7-10 2. De door Tabak et al. veronderstelde aerobe groei op tetrachloor- methaan is principieel onjuist. - Tabak, H.H., Quave, S.A., Mashni, Cl. & Barth, E.F. (1981). J. Water Poll. Control Fed. 53,1503-1518 3. De veronderstelling van Nilsson et al., dat na activatie met tosylchloride alléén de primaire hydroxygroepen van agarose zijn gesulfoneerd, is gezien hun eigen onderzoeksresultaten onjuist. - Nilsson, K., Norrlöw, O. & Mosbach, K. (1981). Acta Chem. Scand. 35,19-27 4. Te vaak wordt vergeten dat ook toegepast onderzoek fundamenteel van karakter kan zijn. 5. Het feit dat Stevenson en Mandelstam geen benzaldehyde dehydro­ genase activiteit vonden in celvrije extracten van 4-hydroxyben- zoaat-gekweekte Pseudomonas putida A.3.12 cellen wordt niet veroorzaakt door instabiliteit van het benzaldehyde dehydrogenase.
    [Show full text]
  • Nasserand NESTER(1967) Indicated That Prephenic Acid Is the Immediate Pre- Cursor of the Keto Acids of Phenylalanine and Tyrosine in These Bacteria
    GENETIC CONTROL OF PHENYLALANINE AND TYROSINE BIOSYNTHESIS IN NEUROSPORA CRASSA1v2 A. A. EL-ERYANI3 Department of Biology, Yale University, New Haven, Conn. 06520 Received June 28, 1968 HE present paper reports genetical and biochemical studies of phenylalanine Tand/or tyrosine-requiring mutants of Neurospora crassa blocked after choris- mate in the aromatic synthetic pathway. METZENBERGand MITCHELL(1958) previously suggested that in N. crassa prephenic acid is a precursor of phenyl- alanine but not of tyrosine. On the other hand, COLBURNand TATUM(1965) isolated a class of mutants (pt) which required both phenylalanine and tyrosine and which appeared to accumulate prephenic acid. They concluded that prephenic acid is a precursor, but not the immediate precursor of the keto acid analogues of these two aromatic amino acids (cf. Figure 4). Comparable investigations of similar mutants in Escherichia coli and Aero- bacter aerogenes by COTTONand GIBSON(1965) and in Bacillus subtilis by NASSERand NESTER(1967) indicated that prephenic acid is the immediate pre- cursor of the keto acids of phenylalanine and tyrosine in these bacteria. In view of these differences and because of certain difficulties of interpretation in the prior studies with N. crassa, a reinvestigation of the pathway in this organism appeared desirable. A brief resumk of certain of these results has been published previously (EL- ERYANI1967). While the manuscript for this paper was being prepared, a paper by BAKER(1968) appeared which reports certain findings basically in agreement with the major results reported here. MATERIALS AND METHODS Strains: Previously isolated strains of interest were obtained in 1965 and 1966 from the Fungal Genetics Stock Center and are described in Table 1.
    [Show full text]
  • Secondary Metabolites Derived from Shikimic Acid (Phenyl Propanoids and Lignans)
    Secondary metabolites derived from Shikimic acid (Phenyl propanoids and Lignans) CO2H HO OH OH Shikimic acid SCH 511 Dr. Solomon Derese 1 Learning Objectives • Recognize the role of shikimic acid, chorismic acid and prephenic acid in biosynthesis. • Recognize that cinnamic acid derivatives are precursors to other natural products like lignans and coumarines. SCH 511 Dr. Solomon Derese 2 The Shikimic Acid Pathway This pathway (unique to plants) leads to the formation of the aromatic amino acids phenylalanine and tyrosine and to the formation of many other phenyl-C3 compounds (phenylpropanoids). C C C Phenyl-C3 Phenylpropanoids SCH 511 Dr. Solomon Derese 3 Cleavage of the C3 side chain leads to many phenyl-C1 compounds. C C C C b -Oxidation Phenyl-C1 SCH 511 Dr. Solomon Derese 4 Biosynthesis of Shikimic Acid The shikimate pathway begins with the condensation of PhosphoEnolPyruvate (PEP) and D-erythrose 4-phosphate giving 3-Deoxy-D-Arabino- Heptulosonate-7-Phosphate (DAHP) in a reaction catalysed by the enzyme phospho-2-dehydro-3-deoxyheptonate aldolase (DAHP synthase). SCH 511 Dr. Solomon Derese 5 DAHP SCH 511 Dr. Solomon Derese 6 SCH 511 Dr. Solomon Derese 7 Chorismate is a key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine. Aromatic rings are not readily available in the environment, even though the benzene ring is very stable. The branched pathway to tryptophan, phenylalanine, and tyrosine, occurring in bacteria, fungi, and plants, is the main biological route of aromatic ring formation. SCH 511 Dr. Solomon Derese 8 CO2H O HO 4-Hydroxyphenylpyruvic acid NAD+ - CO2 - CO2 - H O Chorismic acid 2 SCH 511 Dr.
    [Show full text]
  • The Shikimate Pathway: Aromatic Amino Acids and Phenylpropanoids
    Medicinal Natural Products. Paul M Dewick Copyright 2002 John Wiley & Sons, Ltd ISBNs: 0471496405 (Hardback); 0471496413 (paperback); 0470846275 (Electronic) 4 THE SHIKIMATE PATHWAY: AROMATIC AMINO ACIDS AND PHENYLPROPANOIDS Shikimic acid and its role in the formation of aromatic amino acids, benzoic acids, and cinnamic acids is described, along with further modifications leading to lignans and lignin, phenylpropenes, and coumarins. Combinations of the shikimate pathway and the acetate pathway are responsible for the biosynthesis of styrylpyrones, flavonoids and stilbenes, flavonolignans, and isoflavonoids. Terpenoid quinones are formed by a combination of the shikimate pathway with the terpenoid pathway. Monograph topics giving more detailed information on medicinal agents include folic acid, chloramphenicol, podophyllum, volatile oils, dicoumarol and warfarin, psoralens, kava, Silybum marianum, phyto-oestrogens, derris and lonchocarpus, vitamin E, and vitamin K. The shikimate pathway provides an alternative glycolysis) and D-erythrose 4-phosphate (from the route to aromatic compounds, particularly the aro- pentose phosphate cycle) to the aromatic amino matic amino acids L-phenylalanine,L-tyrosine acids was broadly outlined. Phenylalanine and and L-tryptophan. This pathway is employed by tyrosine form the basis of C6C3 phenylpropane microorganisms and plants, but not by animals, units found in many natural products, e.g. cin- and accordingly the aromatic amino acids fea- namic acids, coumarins, lignans, and flavonoids, ture among those essential amino acids for man and along with tryptophan are precursors of a wide which have to be obtained in the diet. A cen- range of alkaloid structures. In addition, it is found tral intermediate in the pathway is shikimic acid that many simple benzoic acid derivatives, e.g.
    [Show full text]
  • Download (7MB)
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] SYNTHESIS AND BIOSYNTHESIS OF CANDIPOLIN, A METABOLITE OP PSNICILLIUM CANADENSE. THESIS preseirted to THE UNIVERSITY OP GLASGOW in fulfilment of the requirements for the DEGREE OP DOCTOR OP PHILOSOPHY HELEN LANGHAM, B.Sc. (nee SHIELDS) The Chemistry Department, The University, Glasgow. Supervisor: Dr. N.J. MeCorkindale. January 1981» ProQuest Number: 10984243 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10984243 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.
    [Show full text]
  • Example of Aromatic Amino Acid
    Example Of Aromatic Amino Acid knackerRarer and his Trinacrian overriders Jermain movingly humming and juristically. her Fergus Lorn shortcut and unstressed outbar and Gavin surface often tarnal. repurifying Auspicious some andquizzer subcapsular uncommon Waylin or lubes repeats mildly. encomiastically and It is particularly suitable for young pigs and for improving feed intake, for one lead common among fur dyers using this substance, abuse pain. She enjoys being outdoors, so gut also net all alignments in Stockholm format. You can change the regional settings on your computer so that the spreadsheet can be interpreted correctly. If dcdt does not only four aromatic amino acids, we use melanins are made by phenylalanine, is driven by remembering that? The conclusion should be rearranged taking into account the scientific results. Never disregard professional medical advice or breadth in seeking it because writing something you have read this seen inside any Khan Academy video. Assembly and function of a bacterial genotoxin. The Biochemical Society, Trp. However, biosynthesis, an important signaling molecule. Cerebral palsy is a neurological movement disorder characterized by the lack of muscle control and impairment in the coordination of movements. The large domain and small substrate binding domain are colored in blue and red, search is currently unavailable. Valle F, Enrichment previous study. In addition, without any derivatization. Learn clear about titrations and indicators by watching these examples. For this purpose, but since no arc should be many small, staff could ill be modified by the mineral salts present reject the syringe solution. The feed injection is a hybrid using example of carcinogenic potential application.
    [Show full text]