List of Approved Pharmaceuticals July 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Full Text in Pdf Format
DISEASES OF AQUATIC ORGANISMS Published July 30 Dis Aquat Org Oral pharmacological treatments for parasitic diseases of rainbow trout Oncorhynchus mykiss. 11: Gyrodactylus sp. J. L. Tojo*, M. T. Santamarina Department of Microbiology and Parasitology, Laboratory of Parasitology, Faculty of Pharmacy, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain ABSTRACT: A total of 24 drugs were evaluated as regards their efficacy for oral treatment of gyro- dactylosis in rainbow trout Oncorhj~nchusmykiss. In preliminary trials, all drugs were supplied to infected fish at 40 g per kg of feed for 10 d. Twenty-two of the drugs tested (aminosidine, amprolium, benznidazole, b~thionol,chloroquine, diethylcarbamazine, flubendazole, levamisole, mebendazole, n~etronidazole,mclosamide, nitroxynil, oxibendazole, parbendazole, piperazine, praziquantel, roni- dazole, secnidazole, tetramisole, thiophanate, toltrazuril and trichlorfon) were ineffective Triclabenda- zole and nitroscanate completely eliminated the infection. Triclabendazole was effective only at the screening dosage (40 g per kg of feed for 10 d), while nitroscanate was effective at dosages as low as 0.6 g per kg of feed for 1 d. KEY WORDS: Gyrodactylosis . Rainbow trout Treatment. Drugs INTRODUCTION to the hooks of the opisthohaptor or to ulceration as a result of feeding by the parasite. The latter is the most The monogenean genus Gyrodactylus is widespread, serious. though some individual species have a restricted distri- Transmission takes place largely as a result of direct bution. Gyrodactyloses affect numerous freshwater contact between live fishes, though other pathways species including salmonids, cyprinids and ornamen- (contact between a live fish and a dead fish, or with tal fishes, as well as marine fishes including gadids, free-living parasites present in the substrate, or with pleuronectids and gobiids. -
Witola, Basis of Anthelmintic Resistance and Development Of
9/8/2016 Basis of Anthelmintic Resistance and Novel Approaches to Development of New Efficacious Anthelmintic Drugs William H. Witola, BVetMed, MSc., Ph.D. Department of Pathobiology College of Veterinary Medicine University of Illinois at Urbana-Champaign E-mail: [email protected] Current Anthelmintics 3 Classes of anthelmintic drugs registered in the USA : 1.) Benzimidazoles • Fenbendazole, Safeguard, Panacur 2.) Macrocyclic Lactones • Avermectins: Ivermectin, Ivomec, Primectin, Privermectin • Eprinomectin: Eprinex • Doramectin: Dectomax • Milbimycins: Moxidectin, Cydectin, Quest 3.) Nicotinic Agonists • Imidothiazoles: Levamisole, Prohibit • Tetrahydropyrimidines: Morantel, Rumatel, Positive Goat Pellet, Goat dewormer, Pyrantel, Strongid Spiroindoles (Not registered in US) Amino-acetonitriles (Not registered in US ) How do anthelmintic drugs kill parasites? • Benzimidazoles (Valbazen, Safeguard): Bind to a parasite protein called β-tubulin leading to collapse of parasite skeleton structure. • Avermectin/Milbemycins (Ivomec, cydectin): Bind to proteins in throat (pharynx) of parasite leading to paralysis – parasite can’t eat anymore & dies of starvation! • Imidazothiazoles/Tetrahydropyrimidine (Levamisole, Pyrantel, Morantel): bind to acetylcholine receptors causing muscle paralysis. 1 9/8/2016 Status of Anthelmintics Efficacy Drug Host First 1st Report of Approved Resistance Benzimidazoles : Thiabendazole, Albendazole Sheep, 1961 1964 goat, Horse, 1962 1965 Imidothiazoles-tetrahydropyrimidines : Levamisole, Sheep 1970 1979 Pyrantel -
Comparative Efficacies of Commercially Available Benzimidazoles Against Pseudodactylogyrus Infestations in Eels
DISEASES OF AQUATIC ORGANISMS Published October 4 Dis. aquat. Org. l Comparative efficacies of commercially available benzimidazoles against Pseudodactylogyrus infestations in eels ' Department of Fish Diseases, Royal Veterinary and Agricultural University, 13 Biilowsvej, DK-1870 Frederiksberg C, Denmark Department of Pharmacy, Royal Veterinary and Agricultural University, 13 Biilowsvej. DK-1870 Frederiksberg C,Denmark ABSTRACT: The antiparasitic efficacies of 9 benzimidazoles in commercially avalable formulations were tested (water bath treatments) on small pigmented eels Anguilla anguilla, expenmentally infected by 30 to 140 specimens of Pseudodactylogyrus spp. (Monogenea).Exposure time was 24 h and eels were examined 4 to 5 d post treatment. Mebendazole (Vermox; 1 mg 1-') eradicated all parasites, whereas luxabendazole (pure substance) and albendazole (Valbazen) were 100 % effective only at a concen- tration of 10 mg I-'. Flubendazole (Flubenol), fenbendazole (Panacur) and oxibendazole (Lodltac) (10 mg l-') caused a reduction of the infection level to a larger extent than did triclabendazole (Fasinex) and parbendazole (Helmatac).Thiabendazole (Equizole), even at a concentration as high as 100 mg l-', was without effect on Pseudodactylogyrus spp. INTRODUCTION range of commercially available benzimidazole com- pounds. If drug resistance will develop under practical The broad spectrum anthelmintic drug mebendazoIe eel-farm conditions in the future, it is likely to be was reported as an efficacious compound against infes- recognized during treatments with commercially avail- tations of the European eel Anguilla anguilla with gill able drug formulations. Therefore this type of drug parasitic monogeneans of the genus Pseudodactylo- preparations were used in the present study. gyms (Szekely & Molnar 1987, Buchmann & Bjerre- gaard 1989, 1990, Mellergaard 1989). -
Wachter-Et-Al-LSM-32(2003)101-110.Pdf
Lasers in Surgery and Medicine 32:101–110 (2003) Topical Rose Bengal: Pre-Clinical Evaluation of Pharmacokinetics and Safety 1 1 1 1 2 Eric Wachter, PhD, * Craig Dees, PhD, Jay Harkins, Timothy Scott, PhD, Mark Petersen, DVM, 3 4 Rusty E. Rush, MS, and Amy Cada, PhD 1Provectus Pharmaceuticals, Inc., Knoxville, Tennessee 37931 2College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37916 3Springborn Laboratories, Inc., Spencerville, Ohio 45887 4Therimmune Research Corporation, Gaithersburg, Maryland 20879 Background and Objectives: Rose bengal (RB) is a should have minimal potential for side effects, such as potent photosensitizer that has largely been overlooked as a prolonged photosensitivity. potential photodynamic therapy (PDT) agent. In this study, Since RB readily photobleaches [29], its photodynamic the feasibility of topical delivery of RB to the epidermis has effects may be self-limiting. This is particularly relevant for been evaluated. treatment of many dermatologic conditions, such as psoria- Study Design/Materials and Methods: Topical formu- sis and actinic keratosis, since precise light dosimetry is lations of RB were assessed on murine and rabbit skin for impractical over the large surface areas typically involved pharmacokinetic properties, cutaneous toxicity, and photo- in these diseases: a PDT regimen that exhibits self-limiting sensitization. effects would avoid the need for complex light dosimetry. Results: Hydrophilic formulations (1% RB) exhibited The combination of photodynamic potential, substantial -
(12) United States Patent (10) Patent N0.: US 8,343,962 B2 Kisak Et Al
US008343962B2 (12) United States Patent (10) Patent N0.: US 8,343,962 B2 Kisak et al. (45) Date of Patent: *Jan. 1, 2013 (54) TOPICAL FORMULATION (58) Field of Classi?cation Search ............. .. 514/226.5, 514/334, 420, 557, 567 (75) Inventors: Edward T. Kisak, San Diego, CA (US); See application ?le fOr Complete Search history. John M. NeWsam, La Jolla, CA (US); _ Dominic King-Smith, San Diego, CA (56) References C‘ted (US); Pankaj Karande, Troy, NY (US); Samir Mitragotri, Goleta, CA (US) US' PATENT DOCUMENTS 5,602,183 A 2/1997 Martin et al. (73) Assignee: NuvoResearchOntano (CA) Inc., Mississagua, 6,328,979 2B1 12/2001 Yamashita et a1. 7,001,592 B1 2/2006 Traynor et a1. ( * ) Notice: Subject to any disclaimer, the term of this 7,795,309 B2 9/2010 Kisak eta1~ patent is extended or adjusted under 35 2002/0064524 A1 5/2002 Cevc U.S.C. 154(b) by 212 days. FOREIGN PATENT DOCUMENTS This patent is subject to a terminal dis- W0 WO 2005/009510 2/2005 claimer- OTHER PUBLICATIONS (21) APPI' NO‘, 12/848,792 International Search Report issued on Aug. 8, 2008 in application No. PCT/lB2007/0l983 (corresponding to US 7,795,309). _ Notice ofAlloWance issued on Apr. 29, 2010 by the Examiner in US. (22) Med Aug- 2’ 2010 Appl. No. 12/281,561 (US 7,795,309). _ _ _ Of?ce Action issued on Dec. 30, 2009 by the Examiner in US. Appl. (65) Prior Publication Data No, 12/281,561 (Us 7,795,309), Us 2011/0028460 A1 Feb‘ 3’ 2011 Primary Examiner * Raymond Henley, 111 Related U 5 Application Data (74) Attorney, Agent, or Firm * Foley & Lardner LLP (63) Continuation-in-part of application No. -
Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism -
Chemotherapy of Gastrointestinal Helminths
Chemotherapy of Gastrointestinal Helminths Contributors J. H. Arundel • J. H. Boersema • C. F. A. Bruyning • J. H. Cross A. Davis • A. De Muynck • P. G. Janssens • W. S. Kammerer IF. Michel • M.H. Mirck • M.D. Rickard F. Rochette M. M. H. Sewell • H. Vanden Bossche Editors H. Vanden Bossche • D.Thienpont • P.G. Janssens UNIVERSITATS- BlfiUOTHElC Springer-Verlag Berlin Heidelberg New York Tokyo Contents CHAPTER 1 Introduction. A. DAVIS A. Pathogenic Mechanisms in Man 1 B. Modes of Transmission 2 C. Clinical Sequelae of Infection 3 D. Epidemiological Considerations 3 E. Chemotherapy 4 F. Conclusion 5 References 5 CHAPTER 2 Epidemiology of Gastrointestinal Helminths in Human Populations C. F. A. BRUYNING A. Introduction 7 B. Epidemiological or "Mathematical" Models and Control 8 C. Nematodes 11 I. Angiostrongylus costaricensis 11 II. Anisakis marina 12 III. Ascaris lumbricoides 14 IV. Capillaria philippinensis 21 V. Enterobius vermicularis 23 VI. Gnathostoma spinigerum 25 VII. Hookworms: Ancylostoma duodenale and Necator americanus . 26 VIII. Oesophagostoma spp 32 IX. Strongyloides stercoralis 33 X. Ternidens deminutus 34 XI. Trichinella spiralis 35 XII. Trichostrongylus spp 38 XIII. Trichuris trichiura 39 D. Trematodes 41 I. Echinostoma spp 41 II. Fasciolopsis buski 42 III. Gastrodiscoides hominis 44 IV. Heterophyes heterophyes 44 V. Metagonimus yokogawai 46 X Contents E. Cestodes 47 I. Diphyllobothrium latum 47 II. Dipylidium caninum 50 III. Hymenolepis diminuta 51 IV. Hymenolepis nana 52 V. Taenia saginata 54 VI. Taenia solium 57 VII. Cysticercosis cellulosae 58 References 60 CHAPTER 3 Epidemiology and Control of Gastrointestinal Helminths in Domestic Animals J. F. MICHEL. With 20 Figures A. Introduction 67 I. -
Behavior of Α-Tomatine and Tomatidine Against Several Genera of Trypanosomatids from Insects and Plants and Trypanosoma Cruzi
Acta Scientiarum http://periodicos.uem.br/ojs/acta ISSN on-line: 1807-863X Doi: 10.4025/actascibiolsci.v40i1.41853 BIOTECHNOLOGY Behavior of α-tomatine and tomatidine against several genera of trypanosomatids from insects and plants and Trypanosoma cruzi Adriane Feijó Evangelista1, Erica Akemi Kavati2, Jose Vitor Jankevicius3 and Rafael Andrade Menolli4* 1Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Barretos, São Paulo, Brazil. 2Laboratório de Genética, Instituto Butantan, São Paulo, São Paulo, Brazil. 3Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil. 4Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, 85819-110, Cascavel, Paraná, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. Glycoalkaloids are important secondary metabolites accumulated by plants as protection against pathogens. One of them, α-tomatine, is found in high concentrations in green tomato fruits, while in the ripe fruits, its aglycone form, tomatidine, does not present a protective effect, and it is usual to find parasites of tomatoes like Phytomonas serpens in these ripe fruits. To investigate the sensitivity of trypanosomatids to the action of α-tomatine, we used logarithmic growth phase culture of 20 trypanosomatids from insects and plants and Trypanosoma cruzi. The lethal dose 50% (LD50) was determined by mixing 107 cells of the different isolates with α-tomatine at concentrations ranging from 10-3 to 10-8 M for 30 min at room temperature. The same tests performed with the tomatidine as a control showed no detectable toxicity against the same trypanosomatid cultures. The tests involved determination of the percentage (%) survival of the protozoan cultures in a Neubauer chamber using optical microscopy. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Alpha-Tomatine Content in Tomato and Tomato Products Determined By
J. Agric. Food Chem. 1995, 43, 1507-151 1 1507 a-Tomatine Content in Tomato and Tomato Products Determined by HPLC with Pulsed Amperometric Detection Mendel Friedman* and Carol E. Levin Food Safety and Health Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710 Tomato plants (Lycopersicon esculentum) synthesize the glycoalkaloid a-tomatine, possibly as a defense against insects and other pests. As part of an effort to improve the safety of plant foods, the usefulness of a new HPLC pulsed amperometric detection (PAD) method for the direct analysis of a-tomatine in different parts of the tomato plant; in store-bought and field-grown, including transgenic, tomatoes; in a variety of commercial and home-processed tomato products; and in eggplant and tomatillos was evaluated. The method was found to be useful for analysis of a variety of products including high-tomatine calyxes, flowers, leaves, roots, and stems of the tomato plant (14-130 mg/100 g of fresh weight), low-tomatine red tomatoes (0.03-0.08 mg/100 g), intermediate- tomatine tomatoes (0.1-0.8 mg/100 g), and high-tomatine fresh and processed green, including pickled and fried, tomatoes (0.9-55 mg/100 g). No experimental difficulties were encountered with extraction and analysis of tomatine in complex foods such as tomato juice, ketchup, salsa, sauce, and sun-dried tomatoes. Microwaving and frying did not significantly affect tomatine levels of tomato foods. The tomatine content of fresh market and transgenic delayed-ripening varieties was not different from the range ordinarily seen in tomato. -
The Concise Guide to Pharmacology 2019/20
Edinburgh Research Explorer THE CONCISE GUIDE TO PHARMACOLOGY 2019/20 Citation for published version: Cgtp Collaborators 2019, 'THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters', British Journal of Pharmacology, vol. 176 Suppl 1, pp. S397-S493. https://doi.org/10.1111/bph.14753 Digital Object Identifier (DOI): 10.1111/bph.14753 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L -
Selling Mercury Cosmetics and Pharmaceuticals (W-Hw4-22)
www.pca.state.mn.us Selling mercury cosmetics and pharmaceuticals Mercury-containing skin lightening creams, lotions, soaps, ointments, lozenges, pharmaceuticals and antiseptics Mercury is a toxic element that was historically used in some cosmetic, pharmaceutical, and antiseptic products due to its unique properties and is now being phased out of most uses. The offer, sale, or distribution of mercury-containing products is regulated in Minnesota by the Minnesota Pollution Control Agency (MPCA). Anyone offering a mercury-containing product for sale or donation in Minnesota is subject to these requirements, whether a private citizen, collector, non-profit organization, or business. Offers and sales through any method are regulated, whether in a store or shop, classified advertisement, flea market, or online. If a mercury-containing product is located in Minnesota, it is regulated, regardless of where a purchaser is located. Note: This fact sheet discusses the requirements and restrictions of the MPCA. Cosmetics and pharmaceuticals may also be regulated for sale whether they contain mercury or not by other state or federal agencies, including the Minnesota Board of Pharmacy and the U.S. Food & Drug Administration. See More information on page 2. What are the risks of using mercury-containing products? Use of mercury-containing products can damage the brain, kidneys, and liver. Children and pregnant women are at increased risk. For more information about the risks of mercury exposure, visit the Minnesota Department of Health. See More information on the page 2. If you believe you have been exposed to a mercury-containing product, contact your health care provider or the Minnesota Poison Control Center at 1-800-222-1222.