EU Fisheries Policy – Latest Developments and Future Challenges

Total Page:16

File Type:pdf, Size:1020Kb

EU Fisheries Policy – Latest Developments and Future Challenges STUDY Requested+ by the PECH committee EU fisheries policy – latest developments and future challenges Policy Department for Structural and Cohesion Policies Directorate-General for Internal Policies EN PE 629.202 − September 2019 RESEARCH FOR PECH COMMITTEE EU fisheries policy – latest developments and future challenges Abstract This study examines the latest developments of the Common Fisheries Policy (CFP) in the fields of fisheries management, Common Market Organisation (CMO) and its external dimension. It also discusses the potential challenges that the EU fisheries policy might be facing in the near future. The present research contains ten case studies and concludes with possible solutions and recommendations to address some of the sector’s forthcoming challenges. This document was requested by the European Parliament's Committee on Fisheries. AUTHORS AZTI: Martín ARANDA, Raúl PRELLEZO, Marina SANTURTÚN DTU Aqua: Clara ULRICH Université de Brest: Bertrand LE GALLIC FishFix: Lisa BORGES SAKANA Consultants: Sébastien METZ Research manager: Marcus BREUER Project and publication assistance: Mariana VACLAVOVA Policy Department for Structural and Cohesion Policies, European Parliament LINGUISTIC VERSIONS Original: EN ABOUT THE PUBLISHER To contact the Policy Department or to subscribe to updates on our work for the PECH Committee please write to: [email protected] Manuscript completed in September 2019 © European Union, 2019 This document is available on the internet in summary with option to download the full text at: http://bit.ly/2k6rVSX This document is available on the internet at: http://www.europarl.europa.eu/RegData/etudes/STUD/2019/629202/IPOL_STU(2019)629202_EN.pdf Further information on research for PECH by the Policy Department is available at: https://research4committees.blog/PECH/ Follow us on Twitter: @PolicyPECH Please use the following reference to cite this study: Aranda, M., Ulrich, C., Le Gallic, B., Borges, L., Metz, S., Prellezo, R., Santurtún, M. (2019) Research for PECH Committee — EU fisheries policy – latest developments and future challenges, European Parliament, Policy Department for Structural and Cohesion Policies, Brussels Please use the following reference for in-text citations: Aranda, Ulrich, Le Gallic et al. (2019). DISCLAIMER The opinions expressed in this document are the sole responsibility of the authors and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorized, provided the source is acknowledged and the publisher is given prior notice and sent a copy. EU fisheries policy - latest developments and future challenges CONTENTS LIST OF ABBREVIATIONS 6 LIST OF BOXES 8 LIST OF FIGURES 8 LIST OF TABLES 9 EXECUTIVE SUMMARY 11 BACKGROUND AND SCOPE 15 INTRODUCTION 17 1.1. Overview of the fisheries sector 17 1.2. Regulatory framework 20 1.3. Institutional flow 21 FISHERIES MANAGEMENT 23 2.1. Background 23 2.2. Latest developments 24 2.2.1. Slowly improving status of European fisheries 24 2.2.2. A controversial policy: the landing obligation 26 2.2.3. Achievement of the MSY objective and Multi-Annual management Plans 27 2.3. Future challenges 28 2.3.1. Policy challenges 28 2.3.2. New monitoring technologies 33 2.3.3. Biological and ecological challenges 34 2.4. Case study 1: Cod in the Baltic Sea 37 2.4.1. Situation 37 2.4.2. Forthcoming scenarios 39 2.4.3. Identification of gaps 40 2.5. Case study 2: Anchovy and sardine in the Adriatic Sea 41 2.5.1. Situation 41 2.5.2. Forthcoming scenarios 44 2.5.3. Identification of gaps 45 2.6. Case study 3: Mixed fisheries in the Celtic Sea 46 2.6.1. Situation 46 2.6.2. Forthcoming scenarios 47 2.6.3. Identification of gaps 48 2.7. Conclusions 49 3 IPOL | Policy Department for Structural and Cohesion Policies 2.8. Recommendations 49 COMMON MARKET ORGANISATION 51 3.1. Background 51 3.2. Latest developments 54 3.3. Future challenges 56 3.4. Case study 4: Seabass & seabream aquaculture in the Mediterranean Sea 57 3.4.1. Situation 58 3.4.2. Forthcoming scenarios 61 3.4.3. Identification of gaps 62 3.5. Case study 5: Northern EU market 62 3.5.1. Situation 63 3.5.2. Forthcoming scenarios 66 3.5.3. Identification of gaps 67 3.6. Case study 6: Western waters (including channel fisheries) 67 3.6.1. Situation 68 3.6.2. Forthcoming scenarios 73 3.6.3. Identification of gaps 74 3.7. Conclusions 75 3.8. Recommendations 76 EXTERNAL DIMENSION 77 4.1. Background 77 4.2. Latest developments 78 4.3. Future challenges 81 4.4. Case study 7: The SFPAs with Mauritania, Senegal and Guinea Bissau 83 4.4.1. Situation 83 4.4.2. Forthcoming scenarios 86 4.4.3. Identification of gaps 88 4.5. Case study 8: The EU and fisheries governance in tuna RFMOs 88 4.5.1. Situation 88 4.5.2. Forthcoming scenarios 93 4.5.3. Identification of gaps 94 4.6. Case study 9: The EU and its cooperation in international fisheries governance 95 4.6.1. Situation 95 4.6.2. Forthcoming scenarios 99 4.6.3. Identification of gaps 99 4 EU fisheries policy − latest developments and future challenges 4.7. Case study 10: The Brexit and fisheries 101 4.7.1. Situation 101 4.7.2. Forthcoming scenarios 106 4.7.3. Identification of gaps 107 4.8. Conclusions 108 4.9. Recommendations 108 CONCLUDING REMARKS 111 REFERENCES 113 5 IPOL | Policy Department for Structural and Cohesion Policies LIST OF ABBREVIATIONS AC Advisory Council ABNJ Areas Beyond National Jurisdictions BSAC Baltic Sea Advisory Council CAP Common Agriculture Policy CCP Cooperating and Contracting Party CCSAMLR Convention for the Conservation of Antarctic Marine Living Resources CCSBT Commision for the Conservation of Southern Bluefin Tuna CECAF Committee for the Eastern Central Atlantic Fishery CFP Common Fisheries Policy CMM Conservation and Management Measures CMO Common Market Organisation DCF Data Collection Framework DWFN Distant Water Fishing Nation EBFM Ecosystem-Based Fisheries Management EC European Commission EEZ Exclusive Economic Zone EFCA European Fisheries Control Agency EFJ Extended Fisheries Jurisdiction EM Electronic Monitoring EMFF European Marine and Fisheries Fund EP European Parliament EU European Union EUFA European Union Fisheries Association FAO Food and Agriculture Organisation of the United Nations FMSY Maximum Sustainable Yield exploitation rate FTA Free Trade Agreements GATT General Agreement on Tariffs and Trade GDP Gross Domestic Product GFCM General Fisheries Commission for the Mediterranean Sea GVA Gross Value Added IATTC Inter American Tropical Tuna Commission ICCAT International Commission for the Conservation of Atlantic Tunas 6 EU fisheries policy − latest developments and future challenges ICES International Council for the Exploration of the Sea ILO International Labour Organisation IOTC Indian Ocean Tuna Commission IUU Illegal, Unreported and Unregulated (fishing) JR Joint Recommendation JRC Joint Research Center kW kilowatts LDAC Long Distant Advisory Council MAP Multi-Annual management Plan MCS Monitoring, Control and Surveillance MSY Maximum Sustainable Yield NAFO North Atlantic Fisheries Organization NASCO North Atlantic Salmon Conservation Organization NEAFC North Atlantic Fisheries Commision NGOs Non Governmental Organisations PDO Protected Designation of Origin PECH European Parliament’s Committee on Fisheries PET Protected Endangered and Threatened Species PGI Protected Geographical Indication PMP Production and Marketing Plan RFMO Regional Fisheries Management Organisations STECF Scientific, Technical and Economic Committee for Fisheries SFPA Sustianable Partnership Fisheries Agreements TAC Total Allowable Catch UNCLOS United Nations Convention of the Law of the Seas UNFSA United Nations Fish Stocks Agreement UNGA United Nations General Agreement UK United Kingdom WCPFC Western and Central Fisheries Commission WTO World Trade Organisation 7 IPOL | Policy Department for Structural and Cohesion Policies LIST OF BOXES Box 1: Selected extracts of Article 2 of the CFP Basic Regulation 52 Box 2: Selected extract from the Chapeau of GATT Article XX 55 Box 3: Recital (4) of the CMO Regulation 57 Box 4: Recital (6) of the CMO Regulation 63 Box 5: Article 17 of the CFP Basic Regulation 74 LIST OF FIGURES Figure 1: The ten largest fish producers in the world, 2016 18 Figure 2: Employment in fisheries in full-time equivalents (FTEs), 2016 18 Figure 3: The ten most important species in terms of landing volumes, 2016 19 Figure 4: Aquaculture production in volume and value, 2016 20 Figure 5: Trends in stock status in the Northeast Atlantic, 2003-2017 25 Figure 6: Trends in the indicators of stock biomass (median values of the model-based estimates relative to 2003) 26 Figure 7: Differences in harvest, profit, and biomass in the world fisheries, relative to “No Adaptation” for Representative Concentration Pathways RCP 6.0 in 2100 (corresponding to a global mean temperature expected to increase by 2.2°C by 2100) 36 Figure 8: TAC, discards and landings for eastern Baltic cod in management area 25-32 38 Figure 9: Total catches by marine species group in the Adriatic Sea 42 Figure 10: 2017 STECF (17-15) stock assessment of Adriatic small pelagics (anchovy in green, sardine in pale red) 43 Figure 11: Economic performance indicators for seabass and seabream aquaculture, 2008-2016 61 Figure 12: Per capita household expenditure on fishery and aquaculture products in the EU in 2017 and % variation 2017/2016 (out-of-home consumption is excluded) 64 Figure 13: Consumers’ interest in specific seafood attributes in eight Member
Recommended publications
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • Do Some Atlantic Bluefin Tuna Skip Spawning?
    SCRS/2006/088 Col. Vol. Sci. Pap. ICCAT, 60(4): 1141-1153 (2007) DO SOME ATLANTIC BLUEFIN TUNA SKIP SPAWNING? David H. Secor1 SUMMARY During the spawning season for Atlantic bluefin tuna, some adults occur outside known spawning centers, suggesting either unknown spawning regions, or fundamental errors in our current understanding of bluefin tuna reproductive schedules. Based upon recent scientific perspectives, skipped spawning (delayed maturation and non-annual spawning) is possibly prevalent in moderately long-lived marine species like bluefin tuna. In principle, skipped spawning represents a trade-off between current and future reproduction. By foregoing reproduction, an individual can incur survival and growth benefits that accrue in deferred reproduction. Across a range of species, skipped reproduction was positively correlated with longevity, but for non-sturgeon species, adults spawned at intervals at least once every two years. A range of types of skipped spawning (constant, younger, older, event skipping; and delays in first maturation) was modeled for the western Atlantic bluefin tuna population to test for their effects on the egg-production-per-recruit biological reference point (stipulated at 20% and 40%). With the exception of extreme delays in maturation, skipped spawning had relatively small effect in depressing fishing mortality (F) threshold values. This was particularly true in comparison to scenarios of a juvenile fishery (ages 4-7), which substantially depressed threshold F values. Indeed, recent F estimates for 1990-2002 western Atlantic bluefin tuna stock assessments were in excess of threshold F values when juvenile size classes were exploited. If western bluefin tuna are currently maturing at an older age than is currently assessed (i.e., 10 v.
    [Show full text]
  • NOAA's Description of the U.S Commercial Fisheries Including The
    6.0 DESCRIPTION OF THE PELAGIC LONGLINE FISHERY FOR ATLANTIC HMS The HMS FMP provides a thorough description of the U.S. fisheries for Atlantic HMS, including sectors of the pelagic longline fishery. Below is specific information regarding the catch of pelagic longline fishermen in the Gulf of Mexico and off the Southeast coast of the United States. For more detailed information on the fishery, please refer to the HMS FMP. 6.1 Pelagic Longline Gear The U.S. pelagic longline fishery for Atlantic HMS primarily targets swordfish, yellowfin tuna, or bigeye tuna in various areas and seasons. Secondary target species include dolphin, albacore tuna, pelagic sharks including mako, thresher, and porbeagle sharks, as well as several species of large coastal sharks. Although this gear can be modified (i.e., depth of set, hook type, etc.) to target either swordfish, tunas, or sharks, like other hook and line fisheries, it is a multispecies fishery. These fisheries are opportunistic, switching gear style and making subtle changes to the fishing configuration to target the best available economic opportunity of each individual trip. Longline gear sometimes attracts and hooks non-target finfish with no commercial value, as well as species that cannot be retained by commercial fishermen, such as billfish. Pelagic longline gear is composed of several parts. See Figure 6.1. Figure 6.1. Typical U.S. pelagic longline gear. Source: Arocha, 1997. When targeting swordfish, the lines generally are deployed at sunset and hauled in at sunrise to take advantage of the nocturnal near-surface feeding habits of swordfish. In general, longlines targeting tunas are set in the morning, deeper in the water column, and hauled in the evening.
    [Show full text]
  • Atlantic Bluefin Tuna
    QUALITY STATUS REPORT 2010 Case Reports for the OSPAR List of threatened and/or declining species and habitats – Update Nomination and biomass of older fish since 1993. The reported catch for the East Atlantic and Atlantic bluefin tuna Mediterranean stocks in 2000 was 33,754 MT, Thunnus thynnus about 60% of the peak catch in 1996 although this is probably an under-estimate because of increasing uncertainty about catch statistics (ICCAT, 2002). The best current determination of the state of the stock is that the Spawning Stock Biomass is 86% of the 1970 level. This is similar to the results obtained in 1998 in terms of trends, but more optimistic in terms of current depletion. Nevertheless, the International Commission for the Conservation of Atlantic Tunas (ICCAT) Geographical extent considers that current catch levels are not OSPAR Regions: V sustainable in the long-term (ICCAT, 2002). Biogeographic zones:1,2,4-8 Region & Biogeographic zones specified for Sensitivity decline and/or threat: as above The Atlantic bluefin tuna has a slow growth rate, long life span (up to 20 years) and late The Atlantic bluefin tuna is an oceanic species age of maturity for a fish (4-5 years for the that comes close to shore on a seasonal basis. eastern stock) resulting in a large number of Current management regimes work on the juvenile classes. These characteristics make it basis of their being two stocks, an Eastern more vulnerable to fishing pressure than Atlantic and a Western Atlantic stock, although rapidly growing tropical tuna species (ICCAT, some intermingling is thought to occur along 2002).
    [Show full text]
  • Atlantic BLUEFIN TUNA
    Eastern Atlantic BLUEFIN TUNA FACTS ABOUT BLUEFIN TUNA There are three species of bluefin tuna: The world record for the biggest bluefin caught Atlantic, Pacific, and Southern. Of the Atlantic has stood since 1979 when a 679 kg bluefin was bluefin tuna species, there are two separate caught off the coast of Nova Scotia, Canada. stocks, Eastern and Western. Eastern Atlantic bluefin are thought to be 100% Bluefin can swim as fast as 70mph when mature by the age of five, while those from the they need to, but not for long. Western Atlantic stock are about nine years old before they reach adulthood. They can dive to >1000m, although they usually spend their time near the surface. Bluefin are a long-lived fish, estimated to have a lifespan of around 40 years, by which time Bluefin tuna start out no bigger than an eyelash, they could be as much as 3m long and can weigh gaining 1 kg in the first 6 months; at 10 years, as much as 750 kg. a bluefin tuna is around 2m / 170 kg and can reach 2.7 m / 400 kg at age 20. USUFUKU HONTEN LONGLINE ATLANTIC BLUEFIN TUNA FISHERY Status: Independent adjudicator’s decision Vessel size: 58 metres means the assessor is set to recommend the fishery for certification after a two-year Catch: an average of 19 operating days per year assessment process that included stakeholder from Oct-Nov catching Eastern Atlantic Bluefin tuna feedback and formal objections In 2018, 55.3 tonnes caught of the 28,200 tonnes Independent assessor: Control Union UK ICCAT total allowable catch, which is around 0.2% .
    [Show full text]
  • A Global Valuation of Tuna an Update February 2020 (Final)
    Netting Billions: a global valuation of tuna an update February 2020 (Final) ii Report Information This report has been prepared with the financial support of The Pew Charitable Trusts. The views expressed in this study are purely those of the authors. The content of this report may not be reproduced, or even part thereof, without explicit reference to the source. Citation: Macfadyen, G., Huntington, T., Defaux, V., Llewellin, P., and James, P., 2019. Netting Billions: a global valuation of tuna (an update). Report produced by Poseidon Aquatic Resources Management Ltd. Client: The Pew Charitable Trusts Version: Final Report ref: 1456-REG/R/02/A Date issued: 7 February 2020 Acknowledgements: Our thanks to the following consultants who assisted with data collection for this study: Richard Banks, Sachiko Tsuji, Charles Greenwald, Heiko Seilert, Gilles Hosch, Alicia Sanmamed, Anna Madriles, Gwendal le Fol, Tomasz Kulikowski, and Benoit Caillart. 7 February 2020 iii CONTENTS 1. BACKGROUND AND INTRODUCTION ................................................................... 1 2. STUDY METHODOLOGY ......................................................................................... 3 3. TUNA LANDINGS ..................................................................................................... 5 3.1 METHODOLOGICAL ISSUES ....................................................................................... 5 3.2 RESULTS ...............................................................................................................
    [Show full text]
  • The Story of Atlantic Bluefin Tuna Is One of Intrigue, Filled with International Drama, Mafia Connections, and Plot Twists Worthy of a Movie
    A brief from Sept 2017 Richard Herrmann The Story of Atlantic Bluefin Science-based management will ensure a healthy future Overview The story of Atlantic bluefin tuna is one of intrigue, filled with international drama, mafia connections, and plot twists worthy of a movie. The main character—Thunnus thynnus—is the largest and most athletic tuna, which can grow to the size of a small car and travel nearly as fast as one too. An Atlantic bluefin starts out no bigger than an eyelash and grows to several hundred pounds and more than 6 feet in length in less than a decade. Unlike most fish species, Atlantic bluefin are warm-blooded; the heat created in their huge swimming muscles enables bursting speed, sharp vision, and thought processing second to none in the fish world. They are among the Atlantic’s top predators, with few species they won’t eat—and even fewer that eat them. The fleets of fishing vessels plying the Atlantic—and hoping to cash in on the value that the species has in sushi markets in Japan and high-end restaurants around the world—present the greatest threat to the Atlantic bluefin. Fishermen are often paid more than $10,000 for a single Atlantic bluefin right at the dock. The value of a high- quality fish at the final point of sale can be tens of thousands of dollars. These transactions add up to be big business. A recent estimate set the value of Atlantic bluefin fishing at nearly $200 million at the dock in 2014— and over $800 million at the final point of sale.1 Experts estimate that, pound for pound, this species is the most valuable tuna in the world and likely the most valuable fish in the Atlantic Ocean or the Mediterranean Sea.
    [Show full text]
  • Atlantic Bluefin Tuna and CITES
    OCEANA/Keith Ellenbogen Atlantic Bluefin Tuna and CITES Atlantic bluefin tuna (Thunnus thynnus) has been driven to the edge of collapse by overfishing and the demand for international trade. This top predator has been traditionally harvested in the Eastern Atlantic Ocean and Mediterranean Sea through traditional fishing activity like tuna traps, but in recent decades an industrial fishing industry with high tech purse seine gear has been widely developed, fuelled by government subsidies. The activity of this huge fleet has focused on the main spawning areas in the Mediterranean Sea, where bluefin tuna aggregate to spawn in the spring-summer season.1 The development of this fleet has been accompanied by the development of fattening farms all along the Mediterranean coast, allowing the industry to control both the market and the fisheries. Additionally, the whole industrial activity has been characterised by high percentages of catch misreporting and illegal fishing, leading to higher levels of overfishing. In the western Atlantic Ocean, overfishing led to the adoption of a rebuilding plan in 1999, but this plan has proved unable to recover the stock, with actual catches below the agreed quotas.2 This depleted stock has not shown the needed signs of rebuilding since the plan was adopted. Despite all the clear alarms, the International Commission for the Conservation of Atlantic Tunas (ICCAT), the organisation that brings together all of the countries responsible for managing this tuna fishery, has repeatedly ignored scientific advice and
    [Show full text]
  • Part 2. Implications for Atlantic Bluefin Tuna and Skipjack Tuna A
    Journal of Marine Systems 148 (2015) 1–13 Contents lists available at ScienceDirect Journal of Marine Systems journal homepage: www.elsevier.com/locate/jmarsys Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats Barbara A. Muhling a,b,⁎,YanyunLiua,c,Sang-KiLeea,c,JohnT.Lamkinb, Mitchell A. Roffer d, Frank Muller-Karger e, John F. Walter III b a Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA b Southeast Fisheries Science Center, NOAA, Miami, FL, USA c Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, FL, USA d Roffers Ocean Fishing Forecasting Service, Melbourne, FL, USA e College of Marine Science, University of South Florida, St Petersburg, FL, USA article info abstract Article history: Increasing water temperatures due to climate change will likely have significant impacts on distributions and life Received 22 September 2014 histories of Atlantic tunas. In this study, we combined predictive habitat models with a downscaled climate Received in revised form 13 January 2015 model to examine potential impacts on adults and larvae of Atlantic bluefintuna(Thunnus thynnus) and skipjack Accepted 30 January 2015 tuna (Katsuwonus pelamis) in the Intra-Americas Sea (IAS). An additional downscaled model covering the 20th Available online 7 February 2015 century was used to compare habitat fluctuations from natural variability to predicted future changes under – Keywords: two climate change scenarios: Representative Concentration Pathway (RCP) 4.5 (medium low) and RCP 8.5 fi Atlantic bluefin tuna (high). Results showed marked temperature-induced habitat losses for both adult and larval blue n tuna on Skipjack tuna their northern Gulf of Mexico spawning grounds.
    [Show full text]
  • Follow the Leader
    Follow the leader With an eye to the future: addressing failures in the global management of Bigeye Tuna Mary Lack Acknowledgements Mary Lack is a consultant from Shellack Pty Ltd. International Affairs, National Marine Fisheries Service; and Mr. Ray Clarke of the Pacific Islands Regional Office of the National The author acknowledges, with much appreciation, the Marine Fisheries Service. contribution of Glenn Sant (TRAFFIC International) and Lorraine Hitch (WWF Australia) to this report. Officers from the TRAFFIC Preparation of this report was made possible with funding network provided invaluable advice on the availability of trade support from the David and Lucile Packard Foundation. information. Citation: This document should be cited as: Lack, M. (2007). The report also benefited greatly from the helpful and insightful With an eye to the future: addressing failures in the global comments provided by: Adam Langley, Principal Fisheries management of bigeye tuna. TRAFFIC International and WWF Scientist, Oceanic Fisheries Programme, Secretariat of the Australia. Pacific Community; Ms Deirdre Warner-Kramer and Ms Holly Cover photograph: Unloading tuna caught by longline in the Koehler, Office of Marine Conservation, US Department of Western Central Pacific Ocean. © SPC Oceanic Fisheries State; Ms Kelly Denit and Ms Kim Blankenbeker of the Office of Programme / Siosifa Fukofuka. © 2007 TRAFFIC International and WWF Australia. All or in part of this publication must credit WWF Australia and rights reserved TRAFFIC International as the copyright owner. All material appearing in this publication is copyrighted and The views of the authors expressed in this publication do not may be reproduced with permission. Any reproduction in full necessarily reflect those of TRAFFIC, WWF or IUCN.
    [Show full text]
  • C1. Tuna and Tuna-Like Species
    163 C1. TUNA AND TUNA-LIKE SPECIES exceptional quality reached US$500 per kg and by Jacek Majkowski * more recently even more, but such prices referring to very few single fish do not reflect the INTRODUCTION situation with the market. Bigeye are also well priced on the sashimi markets. Although The sub-order Scombroidei is usually referred to yellowfin are also very popular on these markets, as tuna and tuna-like species (Klawe, 1977; the prices they bring are much lower. For Collette and Nauen, 1983; Nakamura, 1985). It is canning, albacore fetch the best prices due to composed of tunas (sometimes referred to as true their white meat, followed by yellowfin and tunas), billfishes and other tuna-like species. skipjack for which fishermen are paid much less They include some of the largest and fastest than US$1 per kg. The relatively low prices of fishes in the sea. canning-quality fish are compensated by their The tunas (Thunnini) include the most very large catches, especially in the case of economically important species referred to as skipjack and yellowfin. Longtail tuna principal market tunas because of their global (T. tonggol) is becoming increasingly important economic importance and their intensive for canning and the subject of substantial international trade for canning and sashimi (raw international trade. The consumption of tuna and fish regarded as delicacy in Japan and tuna-like species in forms other than canned increasingly, in several other countries). In fact, products and sashimi is increasing. the anatomy of some tuna species seems to have The tunas other than the principal market species been purpose-designed for canning and loining.
    [Show full text]
  • Before the Secretary of Commerce Petition to List the Pacific Bluefin Tuna
    Credit: aes256 [CC BY 2.1 jp] via Wikimedia Commons Before the Secretary of Commerce Petition to List the Pacific Bluefin Tuna (Thunnus orientalis) as Endangered Under the Endangered Species Act June 20, 2016 6/20/2016 EXECUTIVE SUMMARY Petitioners formally request that the Secretary of Commerce, through the National Marine Fisheries Service (NMFS), list the Pacific bluefin tuna (Thunnus orientalis) as endangered or in the alternative list the species as threatened, under the federal Endangered Species Act (ESA), 16 U.S.C. §§ 1531 – 1544. Pacific bluefin tuna are severely overfished, and overfishing continues, making extinction a very real risk. According to the 2016 stock assessment by the International Scientific Committee for Tuna and Tuna-Like Species in the North Pacific Ocean (ISC), decades of overfishing have left the population at just 2.6% of its unfished size. Recent fishing rates (2011-2013) were up to three times higher than commonly used reference points for overfishing. The population’s severe decline, in combination with inadequate regulatory mechanisms to end overfishing or reverse the decline, has pushed Pacific bluefin tuna to the edge of extinction. Pacific bluefin tuna are important apex predators in the marine ecosystem and must be conserved. They are one of three bluefin tuna species. These three species are renowned for their large size, unique physiology and biomechanics, and capacity to swim across ocean basins. They are slow-growing, long-lived, endothermic fish. The Pacific bluefin migrates tens of thousands of miles across the largest ocean to feed and spawn, ranging from waters north of Japan to New Zealand in the western Pacific and off California and Mexico in the eastern Pacific.
    [Show full text]