Netting Billions: a Global Valuation of Tuna

Total Page:16

File Type:pdf, Size:1020Kb

Netting Billions: a Global Valuation of Tuna A report from May 2016 Netting Billions: A Global Valuation of Tuna Contents 1. Overview 3. Tuna ecology and history 3. Tuna fishing nations 5. Methodology 7. The value of tuna By species 7 By fishing gear 14 By region 18 18. How markets affect value 18. Discussion and implications 21. Conclusion 22. Endnotes Authors Grantly Galland, senior associate, global tuna conservation, The Pew Charitable Trusts Anthony Rogers, senior associate, environmental science division, The Pew Charitable Trusts Amanda Nickson, director, global tuna conservation, The Pew Charitable Trusts Pew’s environmental initiative Joshua S. Reichert, executive vice president Tom Wathen, vice president Global tuna conservation Amanda Nickson, director Rachel Hopkins, officer Michael Crispino, manager, communications Henry DeBey, senior associate Grantly Galland, senior associate Dave Gershman, senior associate James Gibbon, senior associate Acknowledgments The authors would like to thank Poseidon Aquatic Resource Management Ltd., particularly Graeme Macfadyen, Tim Huntington, Vincent Defaux, and Benoit Caillart, who conducted the research on sales values that underpins this report, and Shana Miller of the Ocean Foundation for providing technical expertise and guidance in its development. Additionally, Pew thanks Marie-Christine Monfort and Yasuhiro Sanada for contributing to data collection of canned tuna and Japanese sashimi prices, respectively. Angela Bednarek, Dominique Kone, Ben Shouse, and Rebecca Goldburg provided helpful comments on this report’s structure and language. Richard Banks, Elizabeth Havice, and Dale Squires provided peer review comments on a draft of Poseidon’s research. Opinions and conclusions expressed in this report are those of The Pew Charitable Trusts and do not necessarily represent the views of the above individuals. In particular, it should be noted that the research and analysis completed by Poseidon focused specifically on estimating the first sale and retail values, and not on stock status or management arrangements. The conclusions drawn from the data about the need for improved management of tuna fisheries are made by Pew. Contact: Michael Crispino, communications manager Email: [email protected] Project website: pewtrusts.org/tuna The Pew Charitable Trusts is driven by the power of knowledge to solve today’s most challenging problems. Pew applies a rigorous, analytical approach to improve public policy, inform the public, and invigorate civic life. Overview Taken together, the seven most commercially important tuna species are among the most economically valuable fishes on the planet. Collectively, skipjack, albacore, bigeye, yellowfin, Atlantic bluefin, Pacific bluefin, and southern bluefin tuna1 inhabit all of the tropical and temperate waters of the Earth’s oceans—and support artisanal and industrial fishing wherever they exist. Canned and other shelf-stable tuna products provide plentiful and inexpensive protein to markets around the world, while smaller amounts of high-quality tuna steaks and sashimi make their way to affluent markets in Asia, Europe, and North America. Ecologically, tuna are a vital part of marine systems. Their importance in food webs as predators and prey is difficult to monetize; however, these iconic species are known to play a fundamental role in open ocean ecosystems.2 That makes maintaining their health critically important to human communities that rely on them for food and economic well-being, particularly at a time of global ocean change. This report, in which The Pew Charitable Trusts presents the first effort to estimate the full global value of the primary commercial fisheries targeting these seven tuna species and the value of the resulting products, summarizes and discusses the findings of a much more detailed analysis that Pew commissioned from Poseidon Aquatic Resource Management Ltd., an independent fisheries and aquaculture consultancy based in the United Kingdom.3 Estimating the economic contribution of these fisheries informs and highlights the urgency of ensuring that the systems that govern the global ocean are robust and effective. Action is needed to guarantee a healthy and stable future for these species, as well as for the communities and businesses that depend on them. The findings are based on information gathered on tuna fisheries and markets for 2012 and 2014.4 Based on the analysis of available data, commercial fishing vessels in 2012 landed about 4.6 million metric tons of tuna worldwide. The estimated dock value, or amount paid to fishermen, was US$12.2 billion.* The estimated end value of this tuna—the total amount paid by the final consumer—was at least $33.3 billion. The estimate rose significantly when the entire price of a can of tuna, beyond the value of the fish alone, was used. In that case, the end value in 2012 was estimated to be $41.6 billion.5 In 2014, the volume of landed tuna rose to 4.99 million metric tons with an estimated dock value of $9.8 billion. The estimated end value remained similar to that in 2012 due to falling fish prices, and was $32.9 billion, or $42.2 billion when including the full canned product price. Table 1 Total Value of 7 Most Commercially Important Tuna Species Note: Dock values and end values for 2012 and 2014 are Catch Dock value End value in nominal dollars. Year (million metric (billion USD) (billion USD) Sources: Graeme Macfadyen and Vincent Defaux, tons) Estimate of Global Sales Values From Tuna Fisheries— Phase 2 Report (Lymington: Poseidon Aquatic Resource 2012 4.61 $12.21 $41.63 Management Ltd., 2016); and Graeme Macfadyen, Estimate of Global Sales Values From Tuna Fisheries— Phase 3 Report (Lymington: Poseidon Aquatic Resource 2014 4.99 $9.76 $42.21 Management Ltd., 2016) © 2016 The Pew Charitable Trusts * Currency references in this report are in U.S. dollars. 1 While the overall numbers do not reflect the total worth of the seven species, they provide a useful estimate of the contribution made by commercial tuna fisheries to the global economy. A total value of tuna, incorporating sport fishing and in-the-water ecosystem benefits of living tunas, among other things, would be much higher. Therefore, these numbers should be considered conservative. The methodology used to calculate these global estimates allows for values to be broken down by region, species, and fishing gear. For example, the Pacific Ocean is home to the world’s largest tuna fishing grounds, making this region the largest contributor to total global sales values. According to the analysis, the end value of Pacific tuna when including the full canned tuna product price surpassed $22.7 billion in 2014. When looking at individual species, skipjack tuna—most often found in cans—generates the highest estimated amount of revenue because of the volume caught each year. When analyzing individual fish, the three bluefin species—Pacific, southern, and Atlantic—are by far the most highly prized; a single bluefin typically fetches more than a ton of skipjack. Several populations of the most commercially important tunas, particularly the bluefin species, have been fished to levels that scientists and managers consider too low.6 The values reported here help make a convincing economic case for improving the management of the world’s tuna fisheries. Stocks of Pacific bluefin, southern bluefin, and Atlantic bluefin, Atlantic and Pacific bigeye, and Indian Ocean yellowfin are all currently overfished. 7 That means they have been fished down to a population size that no longer supports the maximum level of sustainable fishing and threatens their role in marine ecosystems. As a result, these stocks deliver less overall value to global tuna fisheries than they could if they were managed differently. As with all fisheries, maximizing the value of a species requires management that recognizes the productivity of healthy populations and minimizes the risk that the fishery will end up in an overfished state. Given the increasing number of tuna fisheries classified as overfished, improved management of these populations would likely, in time, improve catch rates and financial returns. The reality is that fisheries management decisions continue to be based predominantly on the short-term economic bottom line—the amount of value gained or lost by fishing on any given day. That must change. Fishery managers should enact policies that at a minimum restore depleted stocks to healthy levels, which should include setting science-based catch limits and developing systems of pre-agreed management actions that would be triggered when stocks fall below certain levels. With a conservative annual value over $40 billion, tuna fisheries represent a significant component of the global economy. Improved management of these fisheries and conservation of tuna stocks are critical to sustaining the health and well-being of marine ecosystems, as well as the industries and coastal peoples who rely on the life in these waters for income and food. 2 Adam Baske Richard Herrmann Tuna ecology and history The tunas are some of the world’s fastest fishes, with sleek bodies designed to achieve maximum speeds. The species referred to in this report migrate thousands of miles over their lifetimes, among oceans, national waters, and fisheries management regimes. Despite some similarities, such as the ability of most tunas to regulate their body temperatures (unlike most other fishes), there are significant biological differences among these species. Tuna can range in size from just a few kilograms up to 680 kg (nearly 1,500 pounds), or roughly the size of a full-grown polar bear. Some tuna species live only a few years, while others can survive for decades. All tunas are open ocean predators that eat fish, squid, and crustaceans. While they occupy a top position in the food web, juvenile tunas are also important to larger predators such as sharks, whales, and even other tunas. Coastal communities around the world have relied on tuna for centuries, and the influence of these species can be found in music, art, and literature.
Recommended publications
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • Do Some Atlantic Bluefin Tuna Skip Spawning?
    SCRS/2006/088 Col. Vol. Sci. Pap. ICCAT, 60(4): 1141-1153 (2007) DO SOME ATLANTIC BLUEFIN TUNA SKIP SPAWNING? David H. Secor1 SUMMARY During the spawning season for Atlantic bluefin tuna, some adults occur outside known spawning centers, suggesting either unknown spawning regions, or fundamental errors in our current understanding of bluefin tuna reproductive schedules. Based upon recent scientific perspectives, skipped spawning (delayed maturation and non-annual spawning) is possibly prevalent in moderately long-lived marine species like bluefin tuna. In principle, skipped spawning represents a trade-off between current and future reproduction. By foregoing reproduction, an individual can incur survival and growth benefits that accrue in deferred reproduction. Across a range of species, skipped reproduction was positively correlated with longevity, but for non-sturgeon species, adults spawned at intervals at least once every two years. A range of types of skipped spawning (constant, younger, older, event skipping; and delays in first maturation) was modeled for the western Atlantic bluefin tuna population to test for their effects on the egg-production-per-recruit biological reference point (stipulated at 20% and 40%). With the exception of extreme delays in maturation, skipped spawning had relatively small effect in depressing fishing mortality (F) threshold values. This was particularly true in comparison to scenarios of a juvenile fishery (ages 4-7), which substantially depressed threshold F values. Indeed, recent F estimates for 1990-2002 western Atlantic bluefin tuna stock assessments were in excess of threshold F values when juvenile size classes were exploited. If western bluefin tuna are currently maturing at an older age than is currently assessed (i.e., 10 v.
    [Show full text]
  • DYNAMIC HABITAT USE of ALBACORE and THEIR PRIMARY PREY SPECIES in the CALIFORNIA CURRENT SYSTEM Calcofi Rep., Vol
    MUHLING ET AL.: DYNAMIC HABITAT USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA CURRENT SYSTEM CalCOFI Rep., Vol. 60, 2019 DYNAMIC HABITAT USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA CURRENT SYSTEM BARBARA MUHLING, STEPHANIE BRODIE, MICHAEL JACOX OWYN SNODGRASS, DESIREE TOMMASI NOAA Earth System Research Laboratory University of California, Santa Cruz Boulder, CO Institute for Marine Science Santa Cruz, CA CHRISTOPHER A. EDWARDS ph: (858) 546-7197 Ocean Sciences Department [email protected] University of California, Santa Cruz, CA BARBARA MUHLING, OWYN SNODGRASS, YI XU HEIDI DEWAR, DESIREE TOMMASI, JOHN CHILDERS Department of Fisheries and Oceans NOAA Southwest Fisheries Science Center Delta, British Columbia, Canada San Diego, CA STEPHANIE SNYDER STEPHANIE BRODIE, MICHAEL JACOX Thomas More University, NOAA Southwest Fisheries Science Center Crestview Hills, KY Monterey, CA ABSTRACT peiods, krill, and some cephalopods (Smith et al. 2011). Juvenile north Pacific albacore Thunnus( alalunga) for- Many of these forage species are fished commercially, age in the California Current System (CCS), supporting but also support higher-order predators further up the fisheries between Baja California and British Columbia. food chain, such as other exploited species (e.g., tunas, Within the CCS, their distribution, abundance, and for- billfish) and protected resources (e.g., marine mammals aging behaviors are strongly variable interannually. Here, and seabirds) (Pikitch et al. 2004; Link and Browman we use catch logbook data and trawl survey records to 2014). Effectively managing marine ecosystems to pre- investigate how juvenile albacore in the CCS use their serve these trophic linkages, and improve robustness of oceanographic environment, and how their distributions management strategies to environmental variability, thus overlap with the habitats of four key forage species.
    [Show full text]
  • Atlantic Bluefin Tuna (Thunnus Thynnus) Population Dynamics
    Environ. Sci. Technol. 2009, 43, 8522–8527 nations of the International Commission for the Conservation Atlantic Bluefin Tuna (Thunnus of Atlantic Tunas (ICCAT) currently manage ABFT fisheries thynnus) Population Dynamics assuming two units (a western stock spawning in the Gulf of Mexico, and an eastern stock which spawns in the Delineated by Organochlorine Mediterranean Sea) ostensibly separated by the 45° W meridian with little intermixing between stocks. However, Tracers tagging studies indicate that bluefin tuna undergo extensive and complex migrations, including trans-Atlantic migrations, ,† and that stock mixing could be as high as 30% (2-4). Extensive REBECCA M. DICKHUT,* - ASHOK D. DESHPANDE,‡ mixing of eastern and western stocks (35 57% bluefin tuna ALESSANDRA CINCINELLI,§ of eastern origin) within the U.S. Mid Atlantic Bight was also 18 MICHELE A. COCHRAN,† reported recently based on otolith δ O values (5). The SIMONETTA CORSOLINI,| uncertainty of stock structures due to mixing makes it difficult RICHARD W. BRILL,† DAVID H. SECOR,⊥ for fisheries managers to assess the effectiveness of rebuilding AND JOHN E. GRAVES† efforts for the dwindling western Atlantic spawning stock of Virginia Institute of Marine Science, Gloucester Point, bluefin tuna. Understanding ABFT spatial distributions and Virginia 23062, National Marine Fisheries Service, dynamics are vital for robust population assessments and Highlands, New Jersey 07732, Department of Chemistry, the design of effective management strategies, and there is University of Florence, 50019
    [Show full text]
  • Ottawa: Complete List of Seafood Samples
    Ottawa: complete list of seafood samples Sold as Identified as (BOLD) Common name (CFIA Mislabelled Purchase (label/menu/server) market name) location Arctic char Salverus alpirus Arctic char (Arctic char, No Restaurant char) Arctic char Salverus alpirus Arctic char (Arctic char, No Restaurant char) Arctic char Salverus alpirus Arctic char (Arctic char, No Restaurant char) Arctic char Salverus alpirus Arctic char (Arctic char, No Grocery char) Store Butterfish Lepidocybium Escolar (Escolar, Snake Yes Restaurant flavobrunneum Mackerel) Cod, Fogo Island Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Atlantic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Icelandic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Atlantic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) (food truck) Cod, Atlantic Gadus macrocephalus Pacific cod (Pacific cod, cod) Yes Restaurant Cod, Pacific Micromesistius australis Southern blue whiting Yes Restaurant (Southern blue whiting, Blue whiting, Blue cod) Cod, Norwegian Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Atlantic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Atlantic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Alaskan Gadus macrocephalus Pacific cod (Pacific cod, cod) No Grocery Store Cod, Pacific Gadus macrocephalus Pacific cod (Pacific cod, cod) No Grocery Store Cod, North Atlantic Gadus macrocephalus Pacific cod (Pacific cod, cod) Yes Restaurant Cod Gadus macrocephalus Pacific cod (Pacific cod, cod) No Grocery Store Cod, Icelandic Gadus morhua Atlantic cod (Atlantic cod, No Grocery cod) Store Cod, Icelandic Gadus morhua Atlantic cod (Atlantic cod, No Grocery cod) Store Euro Bass Gadus morhua Atlantic cod (Atlantic cod, Yes Restaurant cod) Grouper Epinephelus diacanthus Spinycheek grouper (n/a) Yes – E.
    [Show full text]
  • NOAA's Description of the U.S Commercial Fisheries Including The
    6.0 DESCRIPTION OF THE PELAGIC LONGLINE FISHERY FOR ATLANTIC HMS The HMS FMP provides a thorough description of the U.S. fisheries for Atlantic HMS, including sectors of the pelagic longline fishery. Below is specific information regarding the catch of pelagic longline fishermen in the Gulf of Mexico and off the Southeast coast of the United States. For more detailed information on the fishery, please refer to the HMS FMP. 6.1 Pelagic Longline Gear The U.S. pelagic longline fishery for Atlantic HMS primarily targets swordfish, yellowfin tuna, or bigeye tuna in various areas and seasons. Secondary target species include dolphin, albacore tuna, pelagic sharks including mako, thresher, and porbeagle sharks, as well as several species of large coastal sharks. Although this gear can be modified (i.e., depth of set, hook type, etc.) to target either swordfish, tunas, or sharks, like other hook and line fisheries, it is a multispecies fishery. These fisheries are opportunistic, switching gear style and making subtle changes to the fishing configuration to target the best available economic opportunity of each individual trip. Longline gear sometimes attracts and hooks non-target finfish with no commercial value, as well as species that cannot be retained by commercial fishermen, such as billfish. Pelagic longline gear is composed of several parts. See Figure 6.1. Figure 6.1. Typical U.S. pelagic longline gear. Source: Arocha, 1997. When targeting swordfish, the lines generally are deployed at sunset and hauled in at sunrise to take advantage of the nocturnal near-surface feeding habits of swordfish. In general, longlines targeting tunas are set in the morning, deeper in the water column, and hauled in the evening.
    [Show full text]
  • IATTC-94-01 the Tuna Fishery, Stocks, and Ecosystem in the Eastern
    INTER-AMERICAN TROPICAL TUNA COMMISSION 94TH MEETING Bilbao, Spain 22-26 July 2019 DOCUMENT IATTC-94-01 REPORT ON THE TUNA FISHERY, STOCKS, AND ECOSYSTEM IN THE EASTERN PACIFIC OCEAN IN 2018 A. The fishery for tunas and billfishes in the eastern Pacific Ocean ....................................................... 3 B. Yellowfin tuna ................................................................................................................................... 50 C. Skipjack tuna ..................................................................................................................................... 58 D. Bigeye tuna ........................................................................................................................................ 64 E. Pacific bluefin tuna ............................................................................................................................ 72 F. Albacore tuna .................................................................................................................................... 76 G. Swordfish ........................................................................................................................................... 82 H. Blue marlin ........................................................................................................................................ 85 I. Striped marlin .................................................................................................................................... 86 J. Sailfish
    [Show full text]
  • Atlantic Bluefin Tuna
    QUALITY STATUS REPORT 2010 Case Reports for the OSPAR List of threatened and/or declining species and habitats – Update Nomination and biomass of older fish since 1993. The reported catch for the East Atlantic and Atlantic bluefin tuna Mediterranean stocks in 2000 was 33,754 MT, Thunnus thynnus about 60% of the peak catch in 1996 although this is probably an under-estimate because of increasing uncertainty about catch statistics (ICCAT, 2002). The best current determination of the state of the stock is that the Spawning Stock Biomass is 86% of the 1970 level. This is similar to the results obtained in 1998 in terms of trends, but more optimistic in terms of current depletion. Nevertheless, the International Commission for the Conservation of Atlantic Tunas (ICCAT) Geographical extent considers that current catch levels are not OSPAR Regions: V sustainable in the long-term (ICCAT, 2002). Biogeographic zones:1,2,4-8 Region & Biogeographic zones specified for Sensitivity decline and/or threat: as above The Atlantic bluefin tuna has a slow growth rate, long life span (up to 20 years) and late The Atlantic bluefin tuna is an oceanic species age of maturity for a fish (4-5 years for the that comes close to shore on a seasonal basis. eastern stock) resulting in a large number of Current management regimes work on the juvenile classes. These characteristics make it basis of their being two stocks, an Eastern more vulnerable to fishing pressure than Atlantic and a Western Atlantic stock, although rapidly growing tropical tuna species (ICCAT, some intermingling is thought to occur along 2002).
    [Show full text]
  • Movements and Diving Behavior of Atlantic Bluefin Tuna Thunnus Thynnus in Relation to Water Column Structure in the Northwestern Atlantic
    Vol. 400: 245–265, 2010 MARINE ECOLOGY PROGRESS SERIES Published February 11 doi: 10.3354/meps08394 Mar Ecol Prog Ser Movements and diving behavior of Atlantic bluefin tuna Thunnus thynnus in relation to water column structure in the northwestern Atlantic Gareth L. Lawson1, 2,*, Michael R. Castleton1, Barbara A. Block1 1Tuna Research and Conservation Center, Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, California 93950, USA 2Present address: Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA ABSTRACT: We analyzed the movements and diving behavior in relation to water column structure of 35 electronically tagged Atlantic bluefin tuna (176 to 240 cm in length at tagging) during their spring–fall period of occupancy of the Gulf of Maine, Canadian Shelf, and neighboring off-shelf waters from 1999 to 2005. Tagged fish arriving in this study region in March–April initially occupied weakly stratified off-shelf waters along the northern Gulf Stream. As waters over the continental shelf warmed in June, the fish shifted onto the shelf. Sea surface temperatures occupied were relatively constant in both off- and on-shelf waters (April–September monthly medians varying from 16.1 to 19.0°C). Dives made in the stratified waters of the shelf during summer and fall were significantly more frequent (up to 180 dives d–1) and fast (descent rates up to 4.1 m s–1) than in weakly stratified off-shelf waters occupied during spring, defining dives as excursions below tag-derived estimates of the surface isothermal layer depth (ILD). The duration and depth of dives also decreased significantly in associa- tion with changing water column structure, from medians in off-shelf waters during April of 0.45 h and 77.0 m, respectively, to 0.16 h and 24.9 m in August.
    [Show full text]
  • EU Fisheries Policy – Latest Developments and Future Challenges
    STUDY Requested+ by the PECH committee EU fisheries policy – latest developments and future challenges Policy Department for Structural and Cohesion Policies Directorate-General for Internal Policies EN PE 629.202 − September 2019 RESEARCH FOR PECH COMMITTEE EU fisheries policy – latest developments and future challenges Abstract This study examines the latest developments of the Common Fisheries Policy (CFP) in the fields of fisheries management, Common Market Organisation (CMO) and its external dimension. It also discusses the potential challenges that the EU fisheries policy might be facing in the near future. The present research contains ten case studies and concludes with possible solutions and recommendations to address some of the sector’s forthcoming challenges. This document was requested by the European Parliament's Committee on Fisheries. AUTHORS AZTI: Martín ARANDA, Raúl PRELLEZO, Marina SANTURTÚN DTU Aqua: Clara ULRICH Université de Brest: Bertrand LE GALLIC FishFix: Lisa BORGES SAKANA Consultants: Sébastien METZ Research manager: Marcus BREUER Project and publication assistance: Mariana VACLAVOVA Policy Department for Structural and Cohesion Policies, European Parliament LINGUISTIC VERSIONS Original: EN ABOUT THE PUBLISHER To contact the Policy Department or to subscribe to updates on our work for the PECH Committee please write to: [email protected] Manuscript completed in September 2019 © European Union, 2019 This document is available on the internet in summary with option to download the full text at: http://bit.ly/2k6rVSX This document is available on the internet at: http://www.europarl.europa.eu/RegData/etudes/STUD/2019/629202/IPOL_STU(2019)629202_EN.pdf Further information on research for PECH by the Policy Department is available at: https://research4committees.blog/PECH/ Follow us on Twitter: @PolicyPECH Please use the following reference to cite this study: Aranda, M., Ulrich, C., Le Gallic, B., Borges, L., Metz, S., Prellezo, R., Santurtún, M.
    [Show full text]
  • Yellowfin Tuna
    Ahi yellown tuna (Thunnus albacares) is one of two Islands. species known in Hawaii simply as Fishing Methods: intermediaries on all islands, or di- ahi. Similar in general appearance rectly to wholesalers and retailers, or it may be shared with family and to bigeye tuna (the other species - known as ahi friends. Most ahi is sold fresh, but men. A large part of the commercial surpluses caught during the peak be recognized by its more torpedo catch (44%) is harvested by longline shaped body, smaller head and eyes. summer season are sometimes dried boats, which may search for tuna and smoked. In Hawaii, shibi is another name up to 800 nautical miles from port and set hooks in deep waters. Yel- Quality to depths below 600 ft. Landings by either bigeye or albacore tuna. Al- lengthen with age. the island of Hawaii, can be sub- stantial (36%) in some years. Troll- Seasonality & How ers contribute most of the remain- does not retain the beautiful natu- They Are Caught der (20%) of the commercial catch ral red color as long as bigeye. The - Availability and Seasonality: - Caught year-round in Hawaii’s wa- ing tournaments held in Hawaii. method, care in handling and other Distribution: abundant during the summer sea- The longline catch and some of the son (May-September). There are handline (ika-shibi) catch of ahi is species. Noticeable changes occur auction. The majority of the hand- Hawaii. ocean surface temperatures and line catch is sold to wholesalers and other oceanographic conditions fa- intermediary buyers on the island of surface during the summer season vor the migration of ahi schools to are susceptible to a quality defect The troll catch may be marketed known as “burnt tuna”.
    [Show full text]
  • Atlantic BLUEFIN TUNA
    Eastern Atlantic BLUEFIN TUNA FACTS ABOUT BLUEFIN TUNA There are three species of bluefin tuna: The world record for the biggest bluefin caught Atlantic, Pacific, and Southern. Of the Atlantic has stood since 1979 when a 679 kg bluefin was bluefin tuna species, there are two separate caught off the coast of Nova Scotia, Canada. stocks, Eastern and Western. Eastern Atlantic bluefin are thought to be 100% Bluefin can swim as fast as 70mph when mature by the age of five, while those from the they need to, but not for long. Western Atlantic stock are about nine years old before they reach adulthood. They can dive to >1000m, although they usually spend their time near the surface. Bluefin are a long-lived fish, estimated to have a lifespan of around 40 years, by which time Bluefin tuna start out no bigger than an eyelash, they could be as much as 3m long and can weigh gaining 1 kg in the first 6 months; at 10 years, as much as 750 kg. a bluefin tuna is around 2m / 170 kg and can reach 2.7 m / 400 kg at age 20. USUFUKU HONTEN LONGLINE ATLANTIC BLUEFIN TUNA FISHERY Status: Independent adjudicator’s decision Vessel size: 58 metres means the assessor is set to recommend the fishery for certification after a two-year Catch: an average of 19 operating days per year assessment process that included stakeholder from Oct-Nov catching Eastern Atlantic Bluefin tuna feedback and formal objections In 2018, 55.3 tonnes caught of the 28,200 tonnes Independent assessor: Control Union UK ICCAT total allowable catch, which is around 0.2% .
    [Show full text]