German Market Analysis and IUU Assessment

Total Page:16

File Type:pdf, Size:1020Kb

German Market Analysis and IUU Assessment German Market Analysis and IUU Assessment WWF Germany [80101064/#15007/jw] Phase 1 Report Final July 2015 Submitted by MRAG Ltd is an independent fisheries and aquatic resource consulting company dedicated to the sustainable use of natural resources through sound, integrated management practices and policies. Established in 1986, MRAG has successfully completed projects in more than 60 countries. Our in-house experts have a wide variety of technical expertise and practical experience across all aspects of aquatic resource management, policy and planning, allowing us to take a multi-disciplinary approach to every project. Our capability to service an extensive array of resource management needs is further extended through our network of associations with internationally acclaimed experts in academic institutions and private organisations worldwide. MRAG Ltd 18 Queen Street T: +44 (0) 20 7255 7755 London F: +44 (0) 20 7499 5388 W1J 5PN W: www.mrag.co.uk United Kingdom E: [email protected] Contents Tables ....................................................................................................................... iii Figures ..................................................................................................................... iii Abbreviations .......................................................................................................... iv 1 Introduction ........................................................................................................ 1 2 Review of German Market Study ...................................................................... 1 2.1 Recommendations for additional information. ......................................................... 1 3 Methodology ...................................................................................................... 2 3.1 Choice of Methodology ........................................................................................... 2 3.2 Selection of species and fishery coverage .............................................................. 3 3.2.1 Volume or value of fish landed / imported ........................................................ 3 3.2.2 Species at a known high level of IUU risk ........................................................ 3 3.2.3 High profile species.......................................................................................... 4 3.2.4 Species selected for assessment ..................................................................... 4 3.3 Estimating an unknown - “IUU” ............................................................................... 6 3.3.1 Limitations ....................................................................................................... 6 3.3.2 Assessing the supply chains of fish into the German market ............................ 7 3.3.3 Assessing the sources of fish from a country ................................................... 7 3.3.4 Qualitative Assessment ................................................................................... 8 4 Species Case Studies ........................................................................................ 9 4.1 Tuna and tuna-like species ..................................................................................... 9 4.1.1 Skipjack tuna (Katsuwonus pelamis) .............................................................. 10 4.1.2 Yellowfin tuna (Thunnus albacares) ............................................................... 11 4.1.3 Albacore (Thunnus alalunga) ......................................................................... 12 4.1.4 Bigeye tuna (Thunnus obesus) ...................................................................... 13 4.1.5 Bluefin tuna (Thunnus thynuus, T. orientalis and T. maccoyi) ........................ 14 4.1.6 Swordfish (Xiphias gladius) ............................................................................ 15 4.1.7 Blue marlin (Makaira nigricans) ...................................................................... 16 4.2 Whitefish ............................................................................................................... 17 4.2.1 Alaska pollock (Theragra chalcogramma) ...................................................... 17 4.2.2 Atlantic cod (Gadus morhua) ......................................................................... 18 4.2.3 Atlantic redfish (Sebastes spp.) ..................................................................... 19 4.2.4 Haddock (Melanogrammus aeglefinus) .......................................................... 20 4.2.5 Hake (Merluccius spp.) .................................................................................. 21 4.2.6 Toothfish (Dissostichus spp.) ......................................................................... 22 4.2.7 Pangasius (Pangasius spp.) .......................................................................... 23 4.2.8 Saithe (Pollachius virens) .............................................................................. 24 4.3 Shrimp .................................................................................................................. 26 MRAG Ltd WWF Germany Market Study –Phase 1 Report Page i 4.3.1 Tropical shrimp (Penaeus spp., Parapaneus longirostris) .............................. 26 4.3.2 Cold-water shrimp (Crangon spp., Pandalidae) .............................................. 27 4.4 Other Species ....................................................................................................... 28 4.4.1 Herring (Clupea spp) ...................................................................................... 28 4.4.2 Orange roughy (Hoplostethus spp.) ............................................................... 31 4.4.3 Horse mackerel (Trachurus trachurus, Scomber japonicus, Lepidocybium spp.) 32 4.4.4 Anglerfish (Lophius spp.) ............................................................................... 32 4.4.5 Zander (Sander spp., Stizostedion spp.) ........................................................ 33 4.4.6 Parrot fish (Scarus spp., Sparisoma spp.) ...................................................... 35 4.4.7 Grenadierfisch (Coryphaenoides rupestris and Macrourus berglax) ............... 35 4.4.8 Dorade (Dentex spp., Lithognatus mormyrus, Diplodus spp., Pagellus spp., Pagrus spp., Sparus spp., Spondyliosoma cantharus) ................................................. 36 4.4.9 Soles (Soleidae; Cynoglossus spp., Microstomus pacificus) .......................... 36 4.4.10 Greenland halibut (Reinhardtius hippoglossoides) ......................................... 37 4.4.11 Snapper ......................................................................................................... 40 4.4.12 Conger eel (Conger conger) .......................................................................... 40 4.4.13 Hoki (Macruronus spp.) .................................................................................. 41 4.4.14 Octopus ......................................................................................................... 43 4.4.15 Wild salmon (Onchorhynchus spp., Salmo salar) ........................................... 45 4.4.16 Turbot (Scophthalmus maximus) ................................................................... 47 4.4.17 Crayfish (Procambarus clarkia) ...................................................................... 48 4.5 Generic problems identified with Chinese and Russian supply chains .................. 48 5 Supplier guidelines .......................................................................................... 50 5.1 Introduction ........................................................................................................... 50 5.2 Objectives ............................................................................................................. 50 5.3 Process and approach .......................................................................................... 50 5.4 Timeline ................................................................................................................ 53 6 Technical Advice on WWFs Traceability Guidelines .................................... 55 Annex 1 Terms of Reference ............................................................................ 56 Annex 2 Species Lists ....................................................................................... 57 Annex 3 Categories of IUU estimation methods showing key references, main data requirements, advantages and disadvantages, and a preliminary conclusion regarding the usefulness for this study. .......................................... 59 Annex 4 EU Criteria for Identification of Non-Cooperating Countries .......... 61 Annex 5 Example of confidentiality agreement .............................................. 63 Annex 6 References .......................................................................................... 64 Page ii WWF Germany Market Study –Phase 1 Report MRAG Ltd Tables Table 3.1 List of candidate species proposed by WWF Germany. ................................. 6 Table 4.1 Reported combined, plaice, sole and flounder imports into (t) Germany from outside the EU (2009 – 2014). ..................................................................... 37 Table 5.1 Data requirements for supplier IUU analysis ................................................ 51 Table 5.2 Categories of IUU risk assessment .............................................................
Recommended publications
  • Sturgeon Chub (Macrhybopsis Gelida): a Technical Conservation Assessment
    Sturgeon Chub (Macrhybopsis gelida): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project August 31, 2004 Frank J. Rahel and Laura A. Thel Department of Zoology and Physiology University of Wyoming, Laramie, Wyoming 82071 Peer Review Administered by American Fisheries Society Rahel, F.J. and L.A. Thel. (2004, August 31). Sturgeon Chub (Macrhybopsis gelida): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/ projects/scp/assessments/sturgeonchub.pdf [date of access]. ACKNOWLEDGEMENTS We thank biologists from Colorado, Kansas, Nebraska, South Dakota, and Wyoming, and from the national forests and national grasslands within Region 2 who provided information about sturgeon chub within their jurisdictions. We especially thank Gregory Hayward and Richard Vacirca of the USDA Forest Service for their review of this species assessment. Comments also were provided by two anonymous reviewers. David B. McDonald of the University of Wyoming provided the population demographic matrix analysis. AUTHORS’ BIOGRAPHIES Frank J. Rahel is a professor in the Department of Zoology and Physiology at the University of Wyoming where he teaches courses in fi sheries management, ichthyology, and conservation biology. His research interests are centered around fi sh ecology and the infl uence of anthropogenic disturbances on fi sh assemblages. Laura A. Thel is a graduate research assistant in the Department of Zoology and Physiology at the University of Wyoming with research interests involving stream ecology, hydrology, and landscape ecology, especially as these are related to the management of native fi shes. COVER PHOTO CREDIT Sturgeon Chub (Macrhybopsis gelida).
    [Show full text]
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • IGFA Angling Rules
    International Angling Rules The following angling rules have been formulated by the International Game Fish Association to promote ethical and sporting angling practices, to establish uniform regulations for the compilation of world game fish records, and to provide basic angling guidelines for use in fishing tournaments and any other group angling activities. The word “angling” is defined as catching or attempting to catch fish with a rod, reel, line, and hook as outlined in the international angling rules. There are some aspects of angling that cannot be controlled through rule making, however. Angling regulations cannot insure an outstanding performance from each fish, and world records cannot indicate the amount of difficulty in catching the fish. Captures in which the fish has not fought or has not had a chance to fight do not reflect credit on the fisherman, and only the angler can properly evaluate the degree of achievement in establishing the record. Only fish caught in accordance with IGFA international angling rules, and within the intent of these rules, will be considered for world records. Following are the rules for freshwater and saltwater fishing and a separate set of rules for fly fishing. RULES FOR FISHING IN FRESH AND SALT WATER (Also see Rules for Fly fishing) E. ROD Equipment Regulations 1. Rods must comply with sporting ethics and customs. A. LINE Considerable latitude is allowed in the choice of a rod, but rods giving 1. Monofilament, multifilament, and lead core multifilament the angler an unfair advantage will be disqualified. This rule is lines may be used. For line classes, see World Record Requirements.
    [Show full text]
  • Do Some Atlantic Bluefin Tuna Skip Spawning?
    SCRS/2006/088 Col. Vol. Sci. Pap. ICCAT, 60(4): 1141-1153 (2007) DO SOME ATLANTIC BLUEFIN TUNA SKIP SPAWNING? David H. Secor1 SUMMARY During the spawning season for Atlantic bluefin tuna, some adults occur outside known spawning centers, suggesting either unknown spawning regions, or fundamental errors in our current understanding of bluefin tuna reproductive schedules. Based upon recent scientific perspectives, skipped spawning (delayed maturation and non-annual spawning) is possibly prevalent in moderately long-lived marine species like bluefin tuna. In principle, skipped spawning represents a trade-off between current and future reproduction. By foregoing reproduction, an individual can incur survival and growth benefits that accrue in deferred reproduction. Across a range of species, skipped reproduction was positively correlated with longevity, but for non-sturgeon species, adults spawned at intervals at least once every two years. A range of types of skipped spawning (constant, younger, older, event skipping; and delays in first maturation) was modeled for the western Atlantic bluefin tuna population to test for their effects on the egg-production-per-recruit biological reference point (stipulated at 20% and 40%). With the exception of extreme delays in maturation, skipped spawning had relatively small effect in depressing fishing mortality (F) threshold values. This was particularly true in comparison to scenarios of a juvenile fishery (ages 4-7), which substantially depressed threshold F values. Indeed, recent F estimates for 1990-2002 western Atlantic bluefin tuna stock assessments were in excess of threshold F values when juvenile size classes were exploited. If western bluefin tuna are currently maturing at an older age than is currently assessed (i.e., 10 v.
    [Show full text]
  • New and Emerging Technologies for Sustainable Fisheries: a Comprehensive Landscape Analysis
    Photo by Pablo Sanchez Quiza New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Environmental Defense Fund | Oceans Technology Solutions | April 2021 New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Authors: Christopher Cusack, Omisha Manglani, Shems Jud, Katie Westfall and Rod Fujita Environmental Defense Fund Nicole Sarto and Poppy Brittingham Nicole Sarto Consulting Huff McGonigal Fathom Consulting To contact the authors please submit a message through: edf.org/oceans/smart-boats edf.org | 2 Contents List of Acronyms ...................................................................................................................................................... 5 1. Introduction .............................................................................................................................................................7 2. Transformative Technologies......................................................................................................................... 10 2.1 Sensors ........................................................................................................................................................... 10 2.2 Satellite remote sensing ...........................................................................................................................12 2.3 Data Collection Platforms ......................................................................................................................
    [Show full text]
  • Issue Statement the Antarctic the Antarctic Continent and Surrounding Southern Ocean Support Unique Terrestrial Ecosystems and S
    Issue Statement The Antarctic The Antarctic continent and surrounding Southern Ocean support unique terrestrial ecosystems and some of the world's most biologically productive neritic and pelagic food webs. At the base of the pelagic food web are Antarctic krill (Euphausia superba), a planktonic crustacean, with an estimated productivity of several billion tons annually. Krill, either directly or indirectly, provide food for most whales, seals, fish, squid, and seabirds that breed in or migrate to the Southern Ocean each year. Small-scale krill fisheries were first established in the 1960s, with several more initiated in the 1980s. Catches since 2010 averaged around 200,000 tons annually, in response to worldwide demand for more protein coupled with advances in technology, prompting concerns about the sustainability of these fisheries, especially considering climate change. In the neritic system, toothfish (Dissostichus spp.) (a key prey species of seals and Orcas) and minke whales (Balaenoptera bonaerensis) are currently the subjects of exploitation. In 1986, the International Whaling Commission placed a moratorium on commercial minke whaling, although the mammals may be killed for research purposes. From 1986 until 2018, Japan continued to harvest minke whales under this exception, with annual catches >500 between 1997 and 2008. In late 2018, Japan announced its intention to withdraw from the International Whaling Commission and resume commercial whaling. Fisheries for the Antarctic toothfish (Dissostichus mawsoni) (also called Antarctic cod) and Patagonian toothfish (Dissostichus eleginoides) (also called Chilean Seabass) are regulated by the Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR). Both are currently harvested, but there are concerns that the illegal catch far outweighs that permitted by the CCAMLR and could jeopardize sustainability of both species.
    [Show full text]
  • Ottawa: Complete List of Seafood Samples
    Ottawa: complete list of seafood samples Sold as Identified as (BOLD) Common name (CFIA Mislabelled Purchase (label/menu/server) market name) location Arctic char Salverus alpirus Arctic char (Arctic char, No Restaurant char) Arctic char Salverus alpirus Arctic char (Arctic char, No Restaurant char) Arctic char Salverus alpirus Arctic char (Arctic char, No Restaurant char) Arctic char Salverus alpirus Arctic char (Arctic char, No Grocery char) Store Butterfish Lepidocybium Escolar (Escolar, Snake Yes Restaurant flavobrunneum Mackerel) Cod, Fogo Island Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Atlantic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Icelandic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Atlantic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) (food truck) Cod, Atlantic Gadus macrocephalus Pacific cod (Pacific cod, cod) Yes Restaurant Cod, Pacific Micromesistius australis Southern blue whiting Yes Restaurant (Southern blue whiting, Blue whiting, Blue cod) Cod, Norwegian Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Atlantic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Atlantic Gadus morhua Atlantic cod (Atlantic cod, No Restaurant cod) Cod, Alaskan Gadus macrocephalus Pacific cod (Pacific cod, cod) No Grocery Store Cod, Pacific Gadus macrocephalus Pacific cod (Pacific cod, cod) No Grocery Store Cod, North Atlantic Gadus macrocephalus Pacific cod (Pacific cod, cod) Yes Restaurant Cod Gadus macrocephalus Pacific cod (Pacific cod, cod) No Grocery Store Cod, Icelandic Gadus morhua Atlantic cod (Atlantic cod, No Grocery cod) Store Cod, Icelandic Gadus morhua Atlantic cod (Atlantic cod, No Grocery cod) Store Euro Bass Gadus morhua Atlantic cod (Atlantic cod, Yes Restaurant cod) Grouper Epinephelus diacanthus Spinycheek grouper (n/a) Yes – E.
    [Show full text]
  • NOAA's Description of the U.S Commercial Fisheries Including The
    6.0 DESCRIPTION OF THE PELAGIC LONGLINE FISHERY FOR ATLANTIC HMS The HMS FMP provides a thorough description of the U.S. fisheries for Atlantic HMS, including sectors of the pelagic longline fishery. Below is specific information regarding the catch of pelagic longline fishermen in the Gulf of Mexico and off the Southeast coast of the United States. For more detailed information on the fishery, please refer to the HMS FMP. 6.1 Pelagic Longline Gear The U.S. pelagic longline fishery for Atlantic HMS primarily targets swordfish, yellowfin tuna, or bigeye tuna in various areas and seasons. Secondary target species include dolphin, albacore tuna, pelagic sharks including mako, thresher, and porbeagle sharks, as well as several species of large coastal sharks. Although this gear can be modified (i.e., depth of set, hook type, etc.) to target either swordfish, tunas, or sharks, like other hook and line fisheries, it is a multispecies fishery. These fisheries are opportunistic, switching gear style and making subtle changes to the fishing configuration to target the best available economic opportunity of each individual trip. Longline gear sometimes attracts and hooks non-target finfish with no commercial value, as well as species that cannot be retained by commercial fishermen, such as billfish. Pelagic longline gear is composed of several parts. See Figure 6.1. Figure 6.1. Typical U.S. pelagic longline gear. Source: Arocha, 1997. When targeting swordfish, the lines generally are deployed at sunset and hauled in at sunrise to take advantage of the nocturnal near-surface feeding habits of swordfish. In general, longlines targeting tunas are set in the morning, deeper in the water column, and hauled in the evening.
    [Show full text]
  • IATTC-94-01 the Tuna Fishery, Stocks, and Ecosystem in the Eastern
    INTER-AMERICAN TROPICAL TUNA COMMISSION 94TH MEETING Bilbao, Spain 22-26 July 2019 DOCUMENT IATTC-94-01 REPORT ON THE TUNA FISHERY, STOCKS, AND ECOSYSTEM IN THE EASTERN PACIFIC OCEAN IN 2018 A. The fishery for tunas and billfishes in the eastern Pacific Ocean ....................................................... 3 B. Yellowfin tuna ................................................................................................................................... 50 C. Skipjack tuna ..................................................................................................................................... 58 D. Bigeye tuna ........................................................................................................................................ 64 E. Pacific bluefin tuna ............................................................................................................................ 72 F. Albacore tuna .................................................................................................................................... 76 G. Swordfish ........................................................................................................................................... 82 H. Blue marlin ........................................................................................................................................ 85 I. Striped marlin .................................................................................................................................... 86 J. Sailfish
    [Show full text]
  • Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries
    JANUARY 2020 Wholesale Market Profiles for Alaska Groundfish and FisheriesCrab Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries JANUARY 2020 JANUARY Prepared by: McDowell Group Authors and Contributions: From NOAA-NMFS’ Alaska Fisheries Science Center: Ben Fissel (PI, project oversight, project design, and editor), Brian Garber-Yonts (editor). From McDowell Group, Inc.: Jim Calvin (project oversight and editor), Dan Lesh (lead author/ analyst), Garrett Evridge (author/analyst) , Joe Jacobson (author/analyst), Paul Strickler (author/analyst). From Pacific States Marine Fisheries Commission: Bob Ryznar (project oversight and sub-contractor management), Jean Lee (data compilation and analysis) This report was produced and funded by the NOAA-NMFS’ Alaska Fisheries Science Center. Funding was awarded through a competitive contract to the Pacific States Marine Fisheries Commission and McDowell Group, Inc. The analysis was conducted during the winter of 2018 and spring of 2019, based primarily on 2017 harvest and market data. A final review by staff from NOAA-NMFS’ Alaska Fisheries Science Center was completed in June 2019 and the document was finalized in March 2016. Data throughout the report was compiled in November 2018. Revisions to source data after this time may not be reflect in this report. Typically, revisions to economic fisheries data are not substantial and data presented here accurately reflects the trends in the analyzed markets. For data sourced from NMFS and AKFIN the reader should refer to the Economic Status Report of the Groundfish Fisheries Off Alaska, 2017 (https://www.fisheries.noaa.gov/resource/data/2017-economic-status-groundfish-fisheries-alaska) and Economic Status Report of the BSAI King and Tanner Crab Fisheries Off Alaska, 2018 (https://www.fisheries.noaa.
    [Show full text]
  • Atlantic Bluefin Tuna
    QUALITY STATUS REPORT 2010 Case Reports for the OSPAR List of threatened and/or declining species and habitats – Update Nomination and biomass of older fish since 1993. The reported catch for the East Atlantic and Atlantic bluefin tuna Mediterranean stocks in 2000 was 33,754 MT, Thunnus thynnus about 60% of the peak catch in 1996 although this is probably an under-estimate because of increasing uncertainty about catch statistics (ICCAT, 2002). The best current determination of the state of the stock is that the Spawning Stock Biomass is 86% of the 1970 level. This is similar to the results obtained in 1998 in terms of trends, but more optimistic in terms of current depletion. Nevertheless, the International Commission for the Conservation of Atlantic Tunas (ICCAT) Geographical extent considers that current catch levels are not OSPAR Regions: V sustainable in the long-term (ICCAT, 2002). Biogeographic zones:1,2,4-8 Region & Biogeographic zones specified for Sensitivity decline and/or threat: as above The Atlantic bluefin tuna has a slow growth rate, long life span (up to 20 years) and late The Atlantic bluefin tuna is an oceanic species age of maturity for a fish (4-5 years for the that comes close to shore on a seasonal basis. eastern stock) resulting in a large number of Current management regimes work on the juvenile classes. These characteristics make it basis of their being two stocks, an Eastern more vulnerable to fishing pressure than Atlantic and a Western Atlantic stock, although rapidly growing tropical tuna species (ICCAT, some intermingling is thought to occur along 2002).
    [Show full text]
  • Skipjack Tuna, Yellowfin Tuna, Swordfish Western and Central
    Skipjack tuna, Yellowfin tuna, Swordfish Katsuwonus pelamis, Thunnus albacares, Xiphias gladius ©Monterey Bay Aquarium Western and Central Pacific Troll/Pole, Handlines July 11, 2017 (updated January 8, 2018) Seafood Watch Consulting Researcher Disclaimer Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science and aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch® program or its recommendations on the part of the reviewing scientists. Seafood Watch® is solely responsible for the conclusions reached in this report. Seafood Watch Standard used in this assessment: Standard for Fisheries vF2 Table of Contents About. Seafood. .Watch . 3. Guiding. .Principles . 4. Summary. 5. Final. Seafood. .Recommendations . 6. Introduction. 8. Assessment. 12. Criterion. 1:. .Impacts . on. the. species. .under . .assessment . .12 . Criterion. 2:. .Impacts . on. other. .species . .18 . Criterion. 3:. .Management . Effectiveness. .23 . Criterion. 4:. .Impacts . on. the. habitat. and. .ecosystem . .29 . Acknowledgements. 32. References. 33. Appendix. A:. Updated. January. 8,. .2017 . 36. 2 About Seafood Watch Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans.
    [Show full text]