Effect of Selected Organic Acids on Cadmium Sorption by Variable- and Permanent-Charge Soils*'

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Selected Organic Acids on Cadmium Sorption by Variable- and Permanent-Charge Soils*' http://www.paper.edu.cn Pedosphere 17(1): 117-123, 2007 ISSN 1002-0160/CN 32-1315/P PEDOSPHERE @ 2007 Soil Science Society of China Published by Elsevier Limited and Science Press www.elsevier.comAocate/pedosphere Effect of Selected Organic Acids on Cadmium Sorption by Variable- and Permanent-Charge Soils*' HU Hong-Qing' , LIU Hua-Liang', HE Ji-Zheng172 and HUANG Qiao-Yun' Key Laboratory of Subtropical Agriculture Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070 (China). E-mail: [email protected] Research Center for Eco-Environment, Chinese Academy of Sciences, Beijing 100085 (China) (Received July 6, 2006; revised September 9, 2006) ABSTRACT Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latosol, with addition of selected organic acids (acetate, tartrate, and citrate). Results showed that with an increase in acetate concentrations from 0 to 3.0 mmol L-l, Cd sorption percentage by the yellow-cinnamon soil, the yellow-brown soil, and the latosol decreased. The sorption percentage of Cd by the yellow-cinnamon soil and generally the yellow-brown soil (permanent-charge soils) decreased with an increase in tartrate concentration, but increased at low tartrate concentrations for the red soil and the latosol. Curves of percentage of Cd sorption for citrate were similar to those for tartrate. For the variable-charge soils with tartrate and citrate, there were obvious peaks in Cd sorption percentage. These peaks, where organic acids had maximum influence, changed with soil type, and were at a higher organic acid concentration for the variable-charge soils than for the permanent charge soils. Addition of cadmium after tartrate adsorption resulted in higher sorption increase for the variable-charge soils than permanent-charge soils. When tartrate and Cd solution were added together, sorption of Cd decreased with tartrate concentration for the yellow-brown soil, but increased at low tartrate concentrations and then decreased with tartrate concentration for the red soil and the latosol. Key Words: cadmium sorption, organic acids, variable- and permanent-charge soils Citation: Hu, H. Q., Liu, H. L., He, J. Z. and Huang, Q. Y.2007. Effect of selected organic acids on cadmium sorption by variable- and permanent-charge soils. Pedoshere. 17( 1): 117-123. INTRODUCTION Concerns over the possible health and ecosystem effects of heavy metals in soils have increased in recent years (Gao et al., 2003; Liao, 2006; Naidu et al., 1997). For heavy metals the most concern in contaminating soil and groundwater is with cadmium (Cd), which is highly toxic and hazardous in soil environments (Naidu et al., 1997; Tran et al., 2002; Zhou et al., 2003). Due to increased industrial use, Cd pollution has increased in recent years (Robinson et al., 2001; Singh and Pandeya, 1998). Sorption of Cd in soils changes its speciation, activity, and fate in the environment (Kookana and Naidu, 1998). Laboratory studies of Cd migration generally focus on sorption characteristics of Cd onto soil or pure minerals (Floroiu et al., 2001; Fontes and Gomes, 2003; McBride et al., 1981; Naidu and Harter, 1998; Tran et al., 2002), but comparisons of sorption behavior onto different soils with varying charge properties are scare. Low molecular weight (LMW) organic acids are abundant in natural soils, particularly in the rhizo- sphere and regions rich in organic matter (Jones, 1998; Strobel, 2001). These acids play a key role in many rhizospheric and pedogenic processes (Hu et al., 2005a; Li et al., 2005). Concentrations of aliphatic LMW carboxylic acids of less than 1 pmol L-' to 2 mmol L-' have been reported (Hu et al., 2005b; Jones, 1998; Strobel, 2001). In general, soil solution concentrations of aliphatic di- and tricarboxylic *'Project supported by the National Natural Sciences Foundation of China (No. 40371065) 转载 中国科技论文在线 http://www.paper.edu.cn 118 H. Q. HU et al. acids are below 50 pmol L-l, but in a few cases concentrations up to 650 pmol L-' have been reported (Hees et al., 1996). Although most Cd sorption studies have been limited to soils of temperate regions where permanent- charge surfaces with net negative charge dominate soils (Naidu et al., 1997), recent research has high- lighted the sorption of Cd by various soil components (Floroiu et al., 2001; Fontes and Gomes, 2003; Naidu and Harter, 1998; Robinson et al., 2001; Tran et at., 2002; Wang and Xing, 2004). To date, dif- ferences of Cd sorption on soils with variable charge and permanent charge, which contain different clay minerals and thus have various surface properties, are not fully understood. The role of organic acids in heavy metal sorption by specific soils and components of soils has also been studied (Hu et al., 2005a); however, Cd sorption by permanent- and variable-charge soils in the presence of LMW organic acids is not well documented and comparisons between the two kinds of soils have not yet been undertaken. The purpose of this study was to determine the effects of organic acids on cadmium sorption by permanent- and variable-charge soils, in order to illustrate the processes of Cd transfer in rhizosphere soils where organic acids are present, and to provide scientific information on re-use of Cd contaminated soils. MATERIALS AND METHODS Samples of four soils, including two variable-charge soils, a red soil (Udult) of Hunan Province and a latosol (Oxisol) of Hainan Province] and two permanent-charge soils, a yellow-brown soil (Udalf) of Hubei Province and a yellow-cinnamon soil (Ustalf) of Hubei Province, were taken from surface horizons (0-40 cm), air-dried, and ground to pass through a 0.25-mm sieve for analysis and further experiments. Basic soil properties (Table I) were determined according to Rayment and Higginson (1992) and Xiong and Chen (1985). Measurements were as follows: pH with a pH meter at a water to soil ratio of 1:1; organic matter content by KaCr207 oxidation; clay content (< 0.002 mm) by particle analysis; clay minerals by x-ray diffraction; cation exchange capacity (CEC) by Ba2+ ion exchange; and point of zero charge (PZC) by potential titration. fiee iron and aluminum oxides were extracted by dithionite-citrate-bicarbonate solution (DCB) and determined by atomic absorption spectrometry (AAS). Acetate, tartrate, and citrate used were high-grade analytically pure reagents. Cd used was in the form'of Cd(N03)2 of analytically pure reagent. TABLE I Basic properties of the soils tested Parent Depth pH OM Clay Clay CECs.2") CEC,") PZCd) Fede) Aid") materiala) (H2O) (< 2 pm) mineralsb) /CECs.2 cm - gkg-' - cmol kg-' - g kg-' - Yellow- Q3 0-20 7.1 9.6 482 HM (800), K (150) 22.20 0.36 2.24 12.0 NDf) cinnamon soil Yellow- Q3 0-20 5.2 16.7 320 HM (750), K (200) 16.85 0.32 2.90 21.9 2.9 brown soil Red soil Qz 0-30 4.0 26.7 480 K (450), HM (250) 18.77 0.55 3.80 36.5 5.6 Latosol Basalt 0-40 4.9 43.5 780 K (950), G 20.24 0.69 4.05 130.0 12.3 ")Qz and Q3 are deposits in the middle and late Quaternary period, respectively. b)HM = hydromica (2:1), K = kaolinite (l:l), G = gibbsite. Data in the parentheses are the contents (g kg-l) of the corresponding minerals. ')CECs.z and CEC, represent the total negative charge amount at pH 8.2 and variable negative charge amount, respe- ct ively. d)Point of zero charge. ")Fed and Ald are Fe and A1 contents, respectively, extracted by dithionite-citrate-bicarbonate solution. f)Not determined. For Cd sorption isotherms, Cd sorption was determined using a batch equilibration technique. A series of solutions containing 0-0.2 mmol L-l Cd(N03)~and 1 mmol L-' KN03 (pH 5.0) were added to soils at 100 mL g-'. The suspensions were shaken for 4 h (Chen and Chen (2002) reported 2 h required 中国科技论文在线 http://www.paper.edu.cn ORGANIC ACID EFFECT ON SOIL CD SORPTION 119 to reach equilibrium for Cd sorption by soils) at 25 "C and then centrifuged for 10 min at 5 000 r min-l. The concentrations of Cd in the solutions were determined by AAS. The amount of Cd sorption was calculated from the difference of Cd concentration between the initial and equilibrium solutions. The amounts of Cd sorption by the soils over the range of Cd concentrations added were fit to the Langmuir equation: Q = KCb/(l + KC) (1) where Q is the Cd sorption quantity; K is a constant relevant to affinity power; C is Cd concentration in the equilibrium solution; and b is the maximum sorption quantity. For Cd sorption in the presence of different concentrations of organic ligands, a mixed solution (pH 5.0) of 0.2 mmol L-' Cd(N03)Z and 0-3.0 mmol L-' acetic, tartaric, or citric acid was added to soils at 100 mL g-'. Cd sorption was conducted at 25 "C by shaking for 4 h. Suspensions were then centrifuged for 10 min at 5000 r min-', and the concentration of Cd in the equilibrium solution was measured by AAS with the amount of Cd sorption calculated as described above. The Cd sorption with addition of tartrate and Cd together was called competitive sorption contrasting to the Cd secondary sorption described below. For Cd secondary sorption after pre-sorption of organic acids, one g of each soil was weighed in a centrifuge tube, and 100 mL organic acid solution of 0-3.0 mmol L-l concentrations were added.
Recommended publications
  • General Characteristics of Soil| Sample Answer
    General Characteristics of Soil| sample answer Q: ‘Examine the general composition and characteristics of any one soil type that you have studied’ (2007 Q17) Latosol- A tropical zonal soil. 3 aspects will be discussed. 1. Composition: Soil is composed of a number of ingredients/components. These components can vary in portion. All soils form as result of the action of several factors. THese factors combine to influence the many processes at work in soil formation eg. Leaching and weathering. These give soil its own characteristics. Soil is composed of number of ingredients and constituents. The components of soil are mixed in different quantities to create different soil types. They are made up of mineral matter, air, water, humus, living organisms. However, climate is the single most important factor in determining what a soil will be like as climate influences vegetation, the rate of weathering and soil, forming processing in an area. The majority of soil is composed of mineral matter. Mineral matter are rock particles from the bedrock and weathered rock. The soil type varies depending on mineral matter. Unconsolidated material eg boulder clay will help form soil more rapidly than solid bedrock as it is partly weathered. Soil is also composed of organic matter. Organic matter includes decaying plants and animals which bacteria and fungi breakdown. Humus is a dark brown jelly-like substance formed from organic matter. Living organisms are also included in ‘organic matter’, earthworms, beetles, fungi, bacteria; they digest organic matter to humus and also mix and create soil. Water is another important component of soil.
    [Show full text]
  • Effects of Afforestation on Soil Structure Formation in Two Climatic Regions Of
    JOURNAL OF FOREST SCIENCE, 61, 2015 (5): 225–234 doi: 10.17221/6/2015-JFS Eff ects of aff orestation on soil structure formation in two climatic regions of the Czech Republic V. Podrázský1, O. Holubík2, J. Vopravil2, T. Khel2, W.K. Moser3, H. Prknová1 1Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic 2Research Institute for Soil and Water Conservation, Department of Soil Science and Soil Conservation, Prague-Zbraslav, Czech Republic 3U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, USA ABSTRACT: The aim of this study was to determine the effect of agricultural land afforestation on soil characteristics. Two sites in two regions of the Czech Republic were evaluated, at lower as well as higher submountain elevations: in the regions of the Orlické hory Mts. and Kostelec nad Černými lesy, afforested, arable and pasture lands were com- pared for basic chemical and physical characteristics. It was determined: pH, CEC, exchangeable nutrients, SOC, bulk density, volume density, porosity (differentiated by pore size), water conductivity and soil aggregate stability. This study demonstrated the important influence of previous land use upon soil characteristics. The characteristics of the arable horizon can persist for many years; in forests, the mineral horizons (15–30 cm) can persist within 15–30 years after afforestation. Afforestation, which caused an increase in soil porosity by decreasing reduced bulk density and increasing capillary and gravitational pores (increasing the water-holding capacity and soil air capacity), is important for maintaining the soil stability. The positive effect on infiltration and retention capacity resulted not only from the presence of a forest overstorey, but also from the presence of permanent grass cover of pasture land.
    [Show full text]
  • Ph, SOIL ACIDITY, and PLANT GROWTH 67 Numbers, the Danish Biochemist S
    pH, SOIL ACIDITY, AND PLANT GROWTH 67 numbers, the Danish biochemist S. P. L. Sorenson devised a system called pH for expressing the acidity or alka- pH, Soil Acidity, linity of solutions. The pH scale goes from o to 14. At pH 7, the midpoint of the scale, there and Plant Growth are equal numbers of hydrogen and hydroxyl ions, and the solution is neu- W. H. Allaway tral. pH values below 7 indicate an acid solution, where there are more hydro- When crop plants do not grow gen ions than hydroxyl ions, with the well, one of the first questions acidity (or hydrogen ion concentra- tion) increasing as the pH values get the soil scientist usually asks smaller. is, ''What is the pH of the soil?'' pH values above 7 denote alkaline solutions, with the concentration of or, 'Is the soil acid, neutral, hydroxyl ions increasing as the pH or alkaline?'' values get larger. The pH scale is based on logarithms The reason for these questions lies in of the concentration of the hydrogen the fact that the pH, or degree of and hydroxyl ions. This means that a acidity of the soil, often is a symptom solution of pH 5 has 10 times the hy- of some disorder in the chemical con- drogen ion concentration of a solution dition of the soil as it relates to plant of pH 6. A solution of pH 4 has 10 nutrition. times more hydrogen ions than one of A measurement of soil acidity or pH 5 and 10 times 10, or 100 times, alkalinity is like a doctor's measure- the hydrogen ion concentration of a ment of a patient's temperature.
    [Show full text]
  • Redalyc.STRUCTURAL QUALITY of POLYACRYLAMIDE-TREATED
    Revista Brasileira de Ciência do Solo ISSN: 0100-0683 [email protected] Sociedade Brasileira de Ciência do Solo Brasil Vandeval Maranhão de Melo, Diego; Gomes de Almeida, Brivaldo; Rodrigues de Souza, Edivan; Santos Silva, Laércio; Jacomine, Paulo Klinger Tito STRUCTURAL QUALITY OF POLYACRYLAMIDE-TREATED COHESIVE SOILS IN THE COASTAL TABLELANDS OF PERNAMBUCO Revista Brasileira de Ciência do Solo, vol. 38, núm. 2, 2014, pp. 476-485 Sociedade Brasileira de Ciência do Solo Viçosa, Brasil Available in: http://www.redalyc.org/articulo.oa?id=180231134011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 476 Diego Vandeval Maranhão de Melo et al. STRUCTURAL QUALITY OF POLYACRYLAMIDE-TREATED COHESIVE SOILS IN THE COASTAL TABLELANDS OF PERNAMBUCO(1) Diego Vandeval Maranhão de Melo(2), Brivaldo Gomes de Almeida(3), Edivan Rodrigues de Souza(3), Laércio Santos Silva(4) & Paulo Klinger Tito Jacomine(5) SUMMARY Water-soluble polymers are characterized as effective flocculating agents due to their molecular features. Their application to soils with horizons with structural problems, e.g, a cohesive character, contributes to improvements in the physical quality and thus to the agricultural suitability of such soils. The purpose of this study was to evaluate the structural quality of soils with cohesive horizons of coastal tablelands in the State of Pernambuco treated with polyacrylamide (PAM) as chemical soil conditioner. To this end, three horizons (one cohesive and two non- cohesive) of a Yellow Argisol (Ultisol) were evaluated and to compare cohesive horizons, the horizon of a Yellow Latosol (Oxisol) was selected.
    [Show full text]
  • The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol
    TECHNICAL BULLETIN No. 53 JUNE 1963 The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol N. H. MONTEITH and G. DONALD SHERMAN HAWAII AGRICULTURAL EXPERIMENT STATION, UNIVERSITY OF HAWAII The Comparative Effects of Calcium Carbonate and of Calcium Silicate on the Yield of Sudan Grass Grown in a Ferruginous Latosol and a Hydrol Humic Latosol N. H. MONTEITH and G. DONALD SHERMAN UNIVERSITY OF HAWAII COLLEGE OF TROPICAL AGRICULTURE HAWAII AGRICULTURAL EXPERIMENT STATION HONOLULU, H AWAII J UNE 1963 T ECIINICAL B ULLETIN No. 53 ACKNOWLEDGMENT The authors gra tcfully acknow ledge the assistance of the staff of th e Experiment Station of the H awaii an Sugar Planters' Association in pro­ viding greenhouse, photographic, and laboratory facilities, and for advice on sta tistical and analytical methods. Research funds on this proj ect were pro vid ed by the Hawaiian Sugar Planters' Association Experiment Station under a coope rative research agreemcnt with the Department of Agronomy and Soil Science. Funds and materials we re also provided by the Tenn essee Valley Authority, Contract No. TV21132A. THE AUTHORS N. H. MONTEITH was In structor in Agricultur e, University of Hawaii, 1961-1962. DR. G. DONALD SHERMAN, Associate Director of the Hawaii Agricultural Experiment Station, is Senior Soil Scientist at the Hawaii Agricultural Ex­ periment Station and Senior Professor of Soil Science, University of Hawaii. CONTENTS PAGE INTRODUcrION 5 LITERAT UHE REVIEW 5 Effect of Calcium Carbonate on Phosphorus Availability 5 Effect of Calcium Carbonate on Other Factors 7 Effect of Calcium Silicate on Phosphorus Availability 8 Effect of Calcium Silicate on Other Factors 8 EXPEmMENTAL PROCEDUHES 9 Soils .
    [Show full text]
  • Seção V - Gênese, Morfologia E Classificação Do Solo
    EVALUATION OF MORPHOLOGICAL, PHYSICAL AND CHEMICAL CHARACTERISTICS... 573 SEÇÃO V - GÊNESE, MORFOLOGIA E CLASSIFICAÇÃO DO SOLO EVALUATION OF MORPHOLOGICAL, PHYSICAL AND CHEMICAL CHARACTERISTICS OF FERRALSOLS AND RELATED SOILS(1) E. KLAMT(2) & L. P. VAN REEUWIJK(3) SUMMARY Morphological, physical and chemical data of 58 soil profiles of Ferralsols and low activity clay Cambisols, Lixisols, Acrisols and Nitisols and of Alisols of the International Soil Reference and Information Centre (ISRIC) collection, described and sampled in eighteen different countries of tropical and subtropical regions, were selected to analyse their consistency and, or, variability and to search for properties to better describe and differentiate them. The soil profile descriptions were based on the guidelines of FAO and the FAO endorsed analytical methods of ISRIC. Frequence diagrams of the data show an asymmetric positively skewed and leptokurtic distribution for sand and silt fractions, specific surface, exchangeable bases and cation exchange capacity. Clustering soil colour hues, values and chromas rendered four distinct clusters, respectively of Rhodic, Rhodic/Xanthic (Haplic), Xanthic and Humic properties. The same technique applied to particle size distribution also originated four clusters, respectively of fine loamy, fine silty, clayey and fine clayey soils. Most of the soils analysed are acid, with low base saturation, except for Rhodic Nitisols and Rhodic Ferralsols, which present low exchangeable aluminium. Higher and variable values of this property are found in the other soil classes studied. Cation exchange capacity is also low and related to the kaolinitic and oxihydroxydic composition of the clay material. Regression analysis applied to cation exchange capacity resulted in low correlations with clay and silt content and higher with organic carbon and specific surface and clay content.
    [Show full text]
  • National Open University of Nigeria
    SLM 507 SOIL MORPHOLOGY AND CLASSIFICATION (3 UNITS) Course Team: Dr. Obasi, Sunday Nathaniel (Course Writer) Department of Crop and Soil Sciences – NOUN Prof. Grace Jokthan (Programme Leader) – NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA National Open University of Nigeria Plot 91, Cadastral Zone, University Village Nnamdi Azikiwe Expressway Jabi, Abuja Lagos Office 14/16 Ahmadu Bello Way Victoria Island Lagos e-mail: [email protected] URL: www.nou.edu.ng 1 Published by: National Open University of Nigeria CONTENTS PAGE Introduction ……………………………………………………. iv What You Will Learn In This Course …………………………. iv Course Aims …………………………………………………… v Course Objectives ……………………………………………… v Working through this Course …………………………………... v Course Materials ……………………………………………….. vi Study Units ……………………………………………………… vi Assessment ……………………………………………………… vii Tutor-Marked Assignment ……………………………………… vii Final Examination and Grading ………………………………… viii Course Marking Scheme ………………………………………... viii Facilitators/Tutors and Tutorials …………………………………viii Summary ………………………………………………………… ix 2 INTRODUCTION Soil is of interest to man because virtually all activities on the earth take place on the soil, ranging from man’s existence, his movement and sources of livelihood. Soil impacts the quality and quantity of our food, and serves as foundation of our structures, as well as interacts with the hydrosphere and atmosphere. When the concepts of soil are being studied in the field of soil science, we look at soil from two perspectives; Soil and it relationship to plants and Soil as a natural body. An understanding of soil properties and processes of formation is therefore critical to the evaluation of the criteria to be adopted for the soil management. The key contents of the course are as follow; the concepts of soil, its full definitions, the processes and factors of soil formations, the field study of soil which has to do with soil morphological properties.
    [Show full text]
  • Mineralogy of Selected Soils from Guam
    Mineralogy of Selected Soils from Guam GEOLOGICAL SURVEY PROFESSIONAL PAPER 403-F Mineralogy of Selected Soils from Guam By DOROTHY CARROLL and JOHN C. HATHAWAY with a section on DESCRIPTION OF SOIL PROFILES By CARL H. STENSLAND GEOLOGY AND HYDROLOGY OF GUAM, MARIANA ISLANDS GEOLOGICAL SURVEY PROFESSIONAL PAPER 403-F A mineralogical study of selected soil samples of Guam, including data on chemical composition, grain-size distribution, and comparison with other areas, as well as a description of soil profiles UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.G., 20402 CONTENTS Page Page Abstract____________________________ Fl Soil genesis Continued Introduction __________________________ 1 Evidence from chemical composition Continued Outline of geology_-------_---_---_--_- 2 Soils on volcanic parent rocks Continued Ferric oxide____________________________ F28 Soils of Guam_________-___-_-_---_--_- 3 Titania__ _____________________ 28 Methods of examination._______________ 4 Water. ________________________________ 29 Mechanical analysis______________ 4 Soils on limestones__________________________ 29 Chemical analysis________________ 5 Silica__________________________ 29 Mineralogical analysis ____________ 5 Alumina,_ _____________________________ 30 Results of analyses___________________ 7 Ferric oxide____________________________
    [Show full text]
  • Characterization of Yellow Latosols (Oxisols) of Serra Do Quilombo, in Piauí State Savanna Woodlands - Brazil1
    Universidade Federal Rural do Semi-Árido ISSN 0100-316X (impresso) Pró-Reitoria de Pesquisa e Pós-Graduação ISSN 1983-2125 (online) http://periodicos.ufersa.edu.br/index.php/sistema http://dx.doi.org/10.1590/1983-21252016v29n407rc CHARACTERIZATION OF YELLOW LATOSOLS (OXISOLS) OF SERRA DO QUILOMBO, IN PIAUÍ STATE SAVANNA WOODLANDS - BRAZIL1 ROSSANNA BARBOSA PRAGANA2*, VALDOMIRO SEVERINO DE SOUZA JUNIOR3, REGIANA DOS SANTOS MOURA4, JORDÂNIA MEDEIROS SOARES5 ABSTRACT – The savanna woodlands of Piauí state has great economic importance since it is an area for agricultural expansion, being the fourth most important of Brazil and the first from Brazilian Northeastern. The area accounts for 5.9% of the Brazilian savanna woodlands and 36.9% of the Northeastern savanna, covering 46% of the Piauí state area, in a total of 11.5 million hectares. The goal of this research was to study pedoenvironments of Serra do Quilombo region, which is in Piauí state savanna, as well as identifying existing soil classes, according to the Brazilian System of Soil Classification - SiBCS. Soil identification consisted in characterizing soil profiles along a transect, assessing in-field conditions and collecting soil samples, in areas of native vegetation. The samples were gathered from three distinct points, being two at the edges and one at the center of the plateau. Soil analyses were carried out with samples collected from each horizon through trench digging up to a 2-m depth. Morphological, physical, chemical and mineralogical characterizations were performed for each soil profile, along with an evaluation of the effect of pedogenic factors on their formation and development. All soils under study were formed with source materials of the same geological formation; however, each rock has a distinct contribution to the process, involving sandstones and shales.
    [Show full text]
  • Chapter 12: Regional Assessment of Soil Changes in Latin America and the Caribbean
    Status of the World’s Main Report Soil Resources Chapter 12 Regional assessment of soil changes in Latin America and the Caribbean © FAO | Giuseppe Bizzarri © FAO INTERGOVERNMENTAL TECHNICAL PANEL ON SOILS Disclaimer and copyright Recommended citation: FAO and ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109004-6 © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Redalyc.Variations in the Chemical Composition of the Solution
    Revista Ciência Agronômica ISSN: 0045-6888 [email protected] Universidade Federal do Ceará Brasil Francisco, João Paulo; Vinícius Folegatti, Marcos; Batista Duarte Silva, Leonardo; Batista Gonçalves Silva, Jonathas; Diotto, Adriano Valentim Variations in the chemical composition of the solution extracted from a Latosol under fertigation with vinasse Revista Ciência Agronômica, vol. 47, núm. 2, abril-julio, 2016, pp. 229-239 Universidade Federal do Ceará Ceará, Brasil Available in: http://www.redalyc.org/articulo.oa?id=195344325002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Ciência Agronômica, v. 47, n. 2, p. 229-239, abr-jun, 2016 Centro de Ciências Agrárias - Universidade Federal do Ceará, Fortaleza, CE Artigo Científico www.ccarevista.ufc.br ISSN 1806-6690 Variations in the chemical composition of the solution extracted from a Latosol under fertigation with vinasse1 Variação na composição química da solução extraída de um Latossolo fertirrigado com vinhaça João Paulo Francisco2*, Marcos Vinícius Folegatti2, Leonardo Batista Duarte Silva3, Jonathas Batista Gonçalves Silva4 and Adriano Valentim Diotto5 ABSTRACT - The aim of this work was to evaluate the change in electrical conductivity and pH of a soil solution and its composition, with regard to the levels of nitrate and potassium, in a Latosol cultivated with pineapple and subjected to applications of different levels of vinasse. The experiment was conducted in a greenhouse at the Department of Biosystems Engineering of ESALQ/USP. The treatments comprised the application of five levels of vinasse: T1 - 0 m3 ha-1, T2 - 231 m3 ha-1, T3 - 347 m3 ha-1, T4 - 462 m3 ha-1, and T5 - 578 m3 ha-1.
    [Show full text]
  • Use of S-Index As a Structural Quality Indicator for Compacted Latosols Cultivated with Maize1
    Universidade Federal Rural do Semi-Árido ISSN 0100-316X (impresso) Pró-Reitoria de Pesquisa e Pós-Graduação ISSN 1983-2125 (online) https://periodicos.ufersa.edu.br/index.php/caatinga http://dx.doi.org/10.1590/1983-21252018v31n222rc USE OF S-INDEX AS A STRUCTURAL QUALITY INDICATOR FOR COMPACTED LATOSOLS CULTIVATED WITH MAIZE1 KARINA DE VARES ROSSETTI2*, JOSÉ FREDERICO CENTURION3 ABSTRACT - One way to prevent soil degradation is to monitor its structural quality through physical attributes and indicators. Thus, the objective of this work was to identify parameters that can be used together with the S-index to assess the soil structural quality of Latosols—Distrophic Red Latosol (DRL) and Eutroferric Red Latosol (ERL)—cultivated with maize after traffic-induced compaction by agricultural machinery. The experiment was conducted in a randomized block design in split-plots, with five treatments and four replications for each soil class. The treatments were: T0 = conventional tillage without additional compaction; T1, T2 and T3 = one pass of a 4, 7 and 10-Mg tractor, respectively; T4 = three passes of a 10-Mg tractor. The water retention curve, density, porosity and S-index of the soil layers 0-0.1, 0.1-0.2 and 0.2-0.3 m were evaluated. The DRL presented similar S-index (0.035 to 0.037) in the T0, T1 and T2, and these S-index were connected to soil macroporosity. Most S-index of the ERL were above 0.035, except for T4 due to its higher soil density. The S-index can be used as a complementary parameter for maize height and soil macroporosity to evaluate the structural quality of DRL.
    [Show full text]