Effusion Cytology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
The Mesocolon a Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization
ORIGINAL ARTICLE The Mesocolon A Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization Kevin Culligan, MRCS,∗ Stewart Walsh, FRCSEd,∗ Colum Dunne, PhD,∗ Michael Walsh, PhD,† Siobhan Ryan, MB,‡ Fabio Quondamatteo, MD,‡ Peter Dockery, PhD,§ and J. Calvin Coffey, FRCSI∗¶ uring fetal development, the dorsal mesentery suspends the en- Background: Colonic mobilization requires separation of mesocolon from tire gastrointestinal tract from the posterior abdominal wall. The underlying fascia. Despite the surgical importance of planes formed by these D mesocolon is the adult remnant of that part of the dorsal mesentery structures, no study has formally characterized their microscopic features. associated with the colon.1 In the adult human, the transverse and The aim of this study was to determine the histological and electron micro- lateral sigmoid portions of the mesocolon are mobile whereas the as- scopic appearance of mesocolon, fascia, and retroperitoneum, prior to and cending, descending, and medial sigmoid portions are nonmobile and after colonic mobilization. attached to underlying retroperitoneum.2–4 Classic anatomic teaching Methods: In 24 cadavers, samples were taken from right, transverse, de- maintains that the ascending and descending mesocolon “disappear” scending, and sigmoid mesocolon. In 12 cadavers, specimens were stained during embryogenesis.5,6 In keeping with this, the identification of a with hematoxylin and eosin (3 sections) or Masson trichrome (3 sections). In right or left mesocolon in the adult is frequently depicted as anoma- the second 12 cadavers, lymphatic channels were identified by staining im- lous rather than accepted as an anatomic norm.7 Accordingly, the munohistochemically for podoplanin. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
ABDOMINOPELVIC CAVITY and PERITONEUM Dr
ABDOMINOPELVIC CAVITY AND PERITONEUM Dr. Milton M. Sholley SUGGESTED READING: Essential Clinical Anatomy 3 rd ed. (ECA): pp. 118 and 135141 Grant's Atlas Figures listed at the end of this syllabus. OBJECTIVES:Today's lectures are designed to explain the orientation of the abdominopelvic viscera, the peritoneal cavity, and the mesenteries. LECTURE OUTLINE PART 1 I. The abdominopelvic cavity contains the organs of the digestive system, except for the oral cavity, salivary glands, pharynx, and thoracic portion of the esophagus. It also contains major systemic blood vessels (aorta and inferior vena cava), parts of the urinary system, and parts of the reproductive system. A. The space within the abdominopelvic cavity is divided into two contiguous portions: 1. Abdominal portion that portion between the thoracic diaphragm and the pelvic brim a. The lower part of the abdominal portion is also known as the false pelvis, which is the part of the pelvis between the two iliac wings and above the pelvic brim. Sagittal section drawing Frontal section drawing 2. Pelvic portion that portion between the pelvic brim and the pelvic diaphragm a. The pelvic portion of the abdominopelvic cavity is also known as the true pelvis. B. Walls of the abdominopelvic cavity include: 1. The thoracic diaphragm (or just “diaphragm”) located superiorly and posterosuperiorly (recall the domeshape of the diaphragm) 2. The lower ribs located anterolaterally and posterolaterally 3. The posterior abdominal wall located posteriorly below the ribs and above the false pelvis and formed by the lumbar vertebrae along the posterior midline and by the quadratus lumborum and psoas major muscles on either side 4. -
Primary Retroperitoneal Mucinous Cystadenoma
Case Reports Primary retroperitoneal mucinous cystadenoma Malak S. Abedalthagafi, MD, Patrick G. Jackson, MD, Metin Ozdemirli, MD, PhD. rimary mucinous cystadenomas of the ABSTRACT Pretroperitoneum are extremely rare tumors. Although very rare cases were reported in men and children, these tumors are found exclusively in تتضمن أورام خلف الصفاق اﻷولي: السرطان الكيسي املخاطي، women.1-3 Like most retroperitoneal tumors, they can اﻷورام املخاطية ذات احلد الفاصل، اﻷورام النادرة واملتواجدة في cause symptoms through exertion of pressure or by النساء واملتضمنة احلزام املخاطي. وحيث أن خلف الصفاق اﻷولي .obstructing adjacent organs if they are large enough ﻻ يحتوي على ظاهرة مخاطية، تبقى نظرية حدوث هذه اﻷورام .They have potential for malignant transformation غير معروفة. نستنتج أن حدوث هذه اﻷورام قد يأتي من اﻷورام There is no unanimous opinion on the genesis of املسخية، أو من املبايض الزائدة، أو من التحول املخاطي للطبقة these tumors and due to their extreme rarity, their املتوسطة خللف الصفاق. نستعرض في هذا التقرير حالة للخدام histogenesis, biological behavior, and their optimal املخاطي خلف الصفاق اﻷولي ملريضة تبلغ من العمر 44 ًعاما، والتي ,management remains at a speculative level. In this paper حضرت بسبب ورم بطني. بعد استئصال الورم بجراحة املنظار we present a case of primary retroperitoneal mucinous لم يكن هناك أية أثر لعودة الورم بعد 16 شهرا.ً الشكل املجهري cystadenoma and review the clinicopathological features, therapeutic options, and outcome in respect والتحليل للصبغات النسيجية يدعم فرضية التحول املخاطي لطبقة to the cases reported in the literature. The morphologic خلف الصفاق املتوسطة واملسبوقة بتكوين كيسي اشتمالي والتي and immunohistochemical analysis observed in this تؤدي إلى حدوث أورام خلف الصفاق املخاطية. -
Anatomy of the Gallbladder and Bile Ducts
BASIC SCIENCE the portal vein lies posterior to these structures; Anatomy of the gallbladder the inferior vena cava, separated by the epiploic foramen (the foramen of Winslow) lies still more posteriorly, and bile ducts behind the portal vein. Note that haemorrhage during gallbladder surgery may be Harold Ellis controlled by compression of the hepatic artery, which gives off the cystic branch, by passing a finger through the epiploic foramen (foramen of Winslow), and compressing the artery Abstract between the finger and the thumb placed on the anterior aspect A detailed knowledge of the gallbladder and bile ducts (together with of the foramen (Pringle’s manoeuvre). their anatomical variations) and related blood supply are essential in At fibreoptic endoscopy, the opening of the duct of Wirsung the safe performance of both open and laparoscopic cholecystectomy can usually be identified quite easily. It is seen as a distinct as well as the interpretation of radiological and ultrasound images of papilla rather low down in the second part of the duodenum, these structures. These topics are described and illustrated. lying under a characteristic crescentic mucosal fold (Figure 2). Unless the duct is obstructed or occluded, bile can be seen to Keywords Anatomical variations; bile ducts; blood supply; gallbladder discharge from it intermittently. The gallbladder (Figures 1 and 3) The biliary ducts (Figure 1) The normal gallbladder has a capacity of about 50 ml of bile. It concentrates the hepatic bile by a factor of about 10 and also The right and left hepatic ducts emerge from their respective sides secretes mucus into it from the copious goblet cells scattered of the liver and fuse at the porta hepatis (‘the doorway to the throughout its mucosa. -
Coordination of Endothelial Cell Positioning and Fate Specification By
ARTICLE https://doi.org/10.1038/s41467-021-24414-z OPEN Coordination of endothelial cell positioning and fate specification by the epicardium Pearl Quijada 1,8, Michael A. Trembley1, Adwiteeya Misra1,2, Jacquelyn A. Myers 3,4, Cameron D. Baker 3,4, Marta Pérez-Hernández 5, Jason R. Myers3,4, Ronald A. Dirkx Jr.1, ✉ Ethan David Cohen6, Mario Delmar5, John M. Ashton 3,4 & Eric M. Small 1,2,7 The organization of an integrated coronary vasculature requires the specification of immature 1234567890():,; endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to- mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. -
Development of the Serosal Mesothelium
J. Dev. Biol. 2013, 1, 64-81; doi:10.3390/jdb1020064 OPEN ACCESS Journal of Developmental Biology ISSN 2221-3759 www.mdpi.com/journal/jdb Review Development of the Serosal Mesothelium Nichelle I. Winters and David M. Bader * Department of Medicine, Vanderbilt University, 2220 Pierce Ave Nashville, TN 37232, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-615-936-1976; Fax: +1-615-936-3527. Received: 3 May 2013; in revised form: 13 June 2013 / Accepted: 19 June 2013 / Published: 26 June 2013 Abstract: Mesothelia in the adult vertebrate are the simple squamous epithelia covering all coelomic organs and body cavities. Until recently, analysis of the generation and differentiative potential of mesothelia in organogenesis has largely focused on development of visceral mesothelium of the heart; the epicardium and its progenitor, the proepicardium. Here, we review emerging data on the development and differentiation of serosal mesothelium, the covering of the gastrointestinal tract. This literature demonstrates that serosal mesothelium is generated through a completely different mechanism than that seen in the heart suggesting that commitment of progenitors to this cell lineage does not follow a common pathway. The differentiative potential of serosal mesothelium is also discussed in comparison to that observed for progeny of the proepicardium/epicardium. In our review of the literature, we point out gaps in our understanding of serosal mesothelial development and that of mesothelial development as a whole. Keywords: mesothelium; proepicardium; epicardium; intestine; heart 1. Mesothelia: Broad Definition Mesothelia are simple squamous epithelia that line coelomic cavities and organs and form the mesenteries. -
Histology of Compound Epithelium
Compound Epithelium Dr. Gitanjali Khorwal Learning objectives • Definition • Types • Function • Identification • Surface modifications of epithelia • SIMPLE • STRATIFIED One cell layer thick Two or more cell layer thick Squamous, Stratified Squamous, Stratified Cuboidal, Cuboidal, Stratified Columnar Pseudostratified Columnar Transitional Cell polarity refers to spatial differences in shape, structure, and function within a cell. • Apical domain • Lateral domain • Basal domain Apical domain modifications • Microvilli • Stereocilia/ Stereovilli • Cilia Microvilli • Finger-like cytoplasmic projections on the apical surface (1-3 micron). • Striated border- regular arrangement • Brush border - irregular arrangement Stereocilia/ Stereovilli • Unusually long, (120 micron) • immotile microvilli. • Epididymis, ductus deferens, Sensory hair cell of inner ear. Cilia • Hairlike extensions of apical plasma membrane • Contain axoneme-microtubule based internal structure. 1. Motile 9+2 2. Primary 9+0 3. Nodal : embryonic disc during gastrulation Stratified squamous epithelium (Non-keratinised) • Variable cell layers-thickness • The deepest cells - basal cell layer are cuboidal or columnar in shape. • mitotically active and replace the cells of the epithelium • layers of cells with polyhedral outlines. • Flattened surface cells. Stratified squamous epithelium (Keratinised) Stratified cuboidal epithelium • A two-or more layered cuboidal epithelium • seen in the ducts of the sweat glands, pancreas, salivary glands. Stratified columnar epithelium • excretory -
Rare Anatomic Variations of the Right Hepatic Biliary System
Surgical and Radiologic Anatomy (2019) 41:1087–1092 https://doi.org/10.1007/s00276-019-02260-5 ANATOMIC VARIATIONS Rare anatomic variations of the right hepatic biliary system Shallu Garg1 · Hemanth Kumar2 · Daisy Sahni1 · T. D. Yadav2 · Anjali Aggarwal1 · Tulika Gupta1 Received: 29 January 2019 / Accepted: 17 May 2019 / Published online: 21 May 2019 © Springer-Verlag France SAS, part of Springer Nature 2019 Abstract Purpose To report rare and clinically signifcant anatomic variations in the biliary drainage of right hepatic lobe. Methods Unique variations in the extra- and intrahepatic biliary drainage of right hepatic lobe were observed in 6 cadaveric livers during dissection on 100 formalin-fxed en bloc cadaveric livers. Results There was presence of aberrant drainage of right segmental and sectorial ducts in four cases and of accessory right posterior sectorial duct in two cases. Conclusions We encountered some extensively complicated biliary drainage of right hepatic lobe, unsuccessful recognition of which can lead to serious biliary complications during hepatobiliary surgeries and biliary interventions. Keywords Hepatic ducts · Biliary anatomy · Liver anatomy · Hepatobiliary surgery Introduction LHD at the hepatic hilum, anterior to the RPV (Fig. 1a). The deviation from this typical biliary anatomy is commonly Precise knowledge of biliary anatomy is a prerequisite for found in clinical practice and has been appropriately classi- obtaining optimal results in ever-increasing complex hepa- fed in the previous studies [3, 15]. However, some new or tobiliary surgeries (e.g., extended hepatic resections, liver extremely rare variations of clinical signifcance still can be transplantation, and laparoscopic cholecystectomy). Biliary encountered and should be documented. We herein report complication remains a major cause of morbidity and mor- six unique cases of complex biliary anatomy that may pose tality, despite improvements in hepatic surgical techniques as one of the important risk factors for bile duct injury dur- [1]. -
HISTOLOGY DRAWINGS Created by Dr Carol Lazer During the Period 2000-2005
HISTOLOGY DRAWINGS created by Dr Carol Lazer during the period 2000-2005 INTRODUCTION The first pages illustrate introductory concepts for those new to microscopy as well as definitions of commonly used histology terms. The drawings of histology images were originally designed to complement the histology component of the first year Medical course run prior to 2004. They are sketches from selected slides used in class from the teaching slide set. These labelled diagrams should closely follow the current Science courses in histology, anatomy and embryology and complement the virtual microscopy used in the current Medical course. © Dr Carol Lazer, April 2005 STEREOLOGY: SLICING A 3-D OBJECT SIMPLE TUBE CROSS SECTION = TRANSVERSE SECTION (XS) (TS) OBLIQUE SECTION 3-D LONGITUDINAL SECTION (LS) 2-D BENDING AND BRANCHING TUBE branch off a tube 2 sections from 2 tubes cut at different angles section at the beginning 3-D 2-D of a branch 3 sections from one tube 1 section and the grazed wall of a tube en face view = as seen from above COMPLEX STRUCTURE (gland) COMPOUND ( = branched ducts) ACINAR ( = bunches of secretory cells) GLAND duct (XS =TS) acinus (cluster of cells) (TS) duct and acinus (LS) 3-D 2-D Do microscope images of 2-D slices represent a single plane of section of a 3-D structure? Do all microscope slides show 2-D slices of 3-D structures? No, 2-D slices have a thickness which can vary from a sliver of one cell to several cells deep. No, slides can also be smears, where entire cells With the limited depth of field of high power lenses lie on the surface of the slide, or whole tissue it is possible to focus through the various levels mounts of very thin structures, such as mesentery. -
Exocrine Glands of the Ant Myrmoteras Iriodum Johan BILLEN1, Tine MANDONX1, Rosli HASHIM2 and Fuminori ITO3 1Zoological Institut
Exocrine glands of the ant Myrmoteras iriodum Johan BILLEN1, Tine MANDONX1, Rosli HASHIM2 and Fuminori ITO3 1Zoological Institute, University of Leuven, Leuven, Belgium; 2Institute of Biological Science, University of Malaya, Kuala Lumpur, Malaysia; and 3Faculty of Agriculture, Kagawa University, Miki, Japan Correspondence: Johan Billen, K.U.Leuven, Zoological Institute, Naamsestraat 59, box 2466, B-3000 Leuven, Belgium. Email: [email protected] Abstract This paper describes the morphological characteristics of 9 major exocrine glands in workers of the formicine ant Myrmoteras iriodum. The elongate mandibles reveal along their entire length a conspicuous intramandibular gland, that contains both class-1 and class-3 secretory cells. The mandibular glands show a peculiar appearance of their secretory cells with a branched end apparatus, which is unusual for ants. The other major glands (pro- and postpharyngeal gland, infrabuccal cavity gland, labial gland, metapleural gland, venom gland and Dufour gland) show the common features for formicine ants. The precise function of the glands could not yet be experimentally demonstrated, and to clarify this will depend on the availability of live material of these enigmatic ants in future. Key word: Formicidae, intramandibular gland, mandibular gland, metapleural gland, venom gland. INTRODUCTION Ants exist in various sizes and shapes, and many species are intensively studied (Hölldobler & Wilson 1990). One of the most remarkable and enigmatic genera is the tropical Asian Myrmoteras Forel. These formicine species are characterized by their extremely big eyes and very long and slender mandibles, that can be held open at 280 degrees during foraging, which is the record value so far recorded among the ants (Fig.