Frequency Vs. Interval

Total Page:16

File Type:pdf, Size:1020Kb

Frequency Vs. Interval Frequency vs. Interval • Milking Frequency – 2 times/day (2X) or 3 times/day (3X) • Milking Interval – 12 hours, 8 hours, etc. • How often do cows want to be milked? Frequency vs. Interval What are the advantages and disadvantages of more frequent milkings? Chemotactic agents: attract PMN into tissues & milk! • Alveoli • Basic milk-producing unit • Lined with epithelial cells • Phagocyte • Cell that engulfs and absorbs bacteria • PMN • Polymorphonuclear neutrophil • First line of defense against invading pathogens during mastitis • Majority cell type accounting for SCC • Macrophages, lymphocytes • Chemotaxis • Movement of an organism in response to a chemical stimulus • Somatic cells and bacteria move according to chemicals in their environment • Where and why would they be moving? • What is a common example of chemotaxis unrelated to milk secretion? Altered Composition During Mastitis Somatic cell counts (SCC) Na, Cl, whey protein (e.g., serum albumin, Ig) lactose, casein, K, α-lactalbumin Altered Composition During Mastitis • Lactose • Synthesis is decreased • Casein • Proteolysis • Proteolytic enzymes from leukocytes and bacteria • Milk fat • Susceptibility of milk fat globule membranes to the action of lipases, resulting in breakdown of triglycerides. Altered Composition During Mastitis • Na+, Cl-, K+ • Electrical potential across apical membrane disrupted • This is the basis of the electrical conductivity methods of detecting mastitis • https://www.youtube.com/watch?v=P-imDC1txWw • Polymorphonuclear neutrophils (PMNs) • Mastitis causes chemotaxis of the cells into the tissue and disruption of epithelial tight junctions • This is the basis of many mastitis detection methods • Albumin, immunoglobulins • Enter the milk via disrupted tight junctional complexes PHYLOGENY & ONTOGENY Phylogeny – the evolutionary development of any animal species (related to mammary gland development) Class Mammalia: Monotremes I. Subclass Prototheria - “1st beasts”, egg layers A. Order Monotremata - Monotremes, egg- laying mammals, most primitive MG Examples: 1. Duckbill platypus 2. Porcupine anteater or echidna Gland Tubes • No nipples • No internal milk storage • Milk secreted onto hairs and lapped up by young • https://www.youtube.com/watch?v=NG uIezLFidY (18:00) When does a monotreme initiate lactation? • In cows and humans: • Placenta detaches • ↓ estrogen and progesterone • ↑ prolactin • Lactation begins • If no placenta is present and eggs are laid, how would the body know to produce milk 10 days after the eggs are laid (when they hatch)? Class Mammalia: Metatheria II. Subclass Theria - “beasts,” born alive A. Infraclass Metatheria - “succeeding beasts”, no true placenta, increased complexity of MG Examples: Marsupials - pouched, opossum, kangaroo Kangaroo • Joeys can be as small as a grain of rice, or as big as a bee, at 0.2 to 0.9 inches (5 to 25 millimeters) at birth • Joeys live in the pouch for another 120 to 450 days • Joeys urinate and defecate in the mother's pouch – Pouch lining absorbs some of the mess, but occasionally the mother will need to clean it out, which she does by inserting her long snout into the pouch and using her tongue to remove the contents • Able to suckle two joeys at different developmental stages at the same time with milk that has different nutritional content!! • Joeys are fully mature at 14 to 20 months for females or 2 to 4 years for males Kangaroo Kangaroo Kangaroo Kangaroo Kangaroo Kangaroo Kangaroo Marsupial Videos Opossum Babies in Pouch: https://www.youtube.com/watch?v=HQI0HRToyiI Kangaroo Birth: https://www.youtube.com/watch?v=UpsnREY-6no Joey in Pouch: https://www.youtube.com/watch?v=qT-Za3wolVo Class Mammalia: Eutheria II. Subclass Theria - “beasts,” born alive B. Infraclass Eutheria -”true beasts”, animals with placentas, highly developed MG 4,000 species Humans, cows, dogs, cats, bats, rats, whales, elephants, shrews, armadillos, etc. PHYLOGENY & ONTOGENY Ontogeny- the life history or biological development of an individual organism (or organ). The relationship of mammary gland to other skin glands. Gland and Secretion Types Exocrine Endocrine Secreted by ducts Not secreted by ducts Secretion poured directly at site Pour secretions into the blood Secrete enzymes Secrete hormones Control short term activity Control long term of target organs Examples: Gastric gland, Examples: Pituitary gland, salivary gland, sweat glands thyroid gland, adrenal gland Merocrine Secretion • Secretions excreted via exocytosis from secretory cells into an epithelial-walled duct, then onto a bodily surface or into the lumen • Most common manner of secretion • The gland releases its product and no part of the gland is lost or damaged (compare holocrine and apocrine) Holocrine Secretion • Secretion produced in the cytoplasm of the cell and released by the rupture of the plasma membrane • Destroys the cell and results in the secretion of the product into the lumen • Most damaging type of secretion Apocrine Secretion • Secretion buds off through the plasma membrane producing membrane-bound vesicles in the lumen • Apical portion (top) of the secretory cell pinches off and enters the lumen • Part of apical cytoplasm is lost with the secreted products Sebaceous Glands • Simple branched acinar gland • Gland has multiple cell layers • Most numerous adjacent to hair sheath and duct opens to hair follicle • Secrete sebum (mostly lipid, but also contains cellular debris) • Whole cell and contents are released – what type of secretion is this? • Secretion discharged as sebum through the sebaceous duct connecting the gland to the hair follicle • Other sebaceous glands open to skin surface are not associated with hair • E.g. lips and eyelids Sebaceous Glands Sebaceous Glands • Sebaceous glands begin to form from embryonic hair follicles gestation and are well-developed at birth • Acne occurs when the outlet from the gland to the surface of the skin is plugged • Sebum accumulates in the follicle and sebaceous duct • Chemical breakdown of triglycerides in the sebum, possibly by bacterial action, releases free fatty acids • Triggers an inflammatory reaction, producing pimples Overactive Sebaceous Glands Cradle Cap Acne Eccrine Gland • Type of sweat gland • Simple, unbranched tubular gland • Terminates in coil in subcutaneous tissue (corium) • Ductal portion is 2-3 layers of cells • Secretory portion is 1 layer of cells • Secretion released (diffuses) through cell membrane • Little change to cell • Merocrine secretion • Secretion contains Na, K, Cl, urea, lactate Eccrine Gland How Sweating Occurs How Sweating Occurs Apocrine Gland • Type of sweat gland • Large tubular gland associated with hair follicles • Located around nipples, groin, anus, pubic region, underarms, and eyelids • Continuously secrete a fatty sweat into the gland tubule • Secretion composed of: protein, carbohydrate, ammonia, lipids, ferric iron, fatty acids • Stress causes the tubule wall to contract, expelling the fatty secretion to the skin, where local bacteria break it down into odorous fatty acids What Causes BO? What Causes BO? What Causes BO? What type of secretion is milk? What type of gland is the mammary gland? What type of secretion is milk? APOCRINE / EXOCRINE What type of gland is the mammary gland? APOCRINE / EXOCRINE Questions?.
Recommended publications
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Pathologic Patterns of the Sebaceous Gland* John S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector PATHOLOGIC PATTERNS OF THE SEBACEOUS GLAND* JOHN S. STRAUSS, M.D.t AND ALBERT M. KLIGMAN, M.D. By studying the way in which a structurecells which subsequently rupture in the fundus reacts to an imposed experimental stress, oneof the gland. Fragments of the thin eosinophilie can often better understand the changes ex-cell wall, which morphologically resemble kera- hibited in spontaneous dlsease. Much has beentin, persist in the sebum; occasionally the entire learned about the potentialities of the eccrinecell walls survive as ghosts. Furthermore, the in- and apocrine sweat units in this fashion (1—12).dividual oil droplets are separated by keratin- Previous study of the response to injury in thelike trabeculae. A dual potentiality is exhibited sebaceous gland has been restricted mainly to theby sebaceous cells in their capacity to produce changes that occur in the sebaceous duct per sefat predominantly and keratin to a minor de- (13). In this study we have followed the reac-gree. Epidermal cells have this bipotentiality tion of the sebaceous gland itself to a variety ofwith keratin as the major product. cutaneous insults and have correlated the findings with those which occur in disease states. MA.TERIALS AND METRODS The scalp and cheek of post-puberal individuals MOBPOLOGY AND FUNCTION OF were selected for study because the glands here TRN SEACEOUS GLAND are among the largest and most numerous. Biopsy 1.Morphology: The glands of the glabrous skinspecimens were obtained before the experimental are not free but are associated with hair follicles,stresses as well as at varying intervals afterwards.
    [Show full text]
  • Side-Branching in the Mammary Gland: the Progesterone–Wnt Connection
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Side-branching in the mammary gland: the progesterone–Wnt connection Gertraud W. Robinson,1 Lothar Hennighausen, and Peter F. Johnson2 Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0822 USA; 2Eukaryotic Transcriptional Regulation Section, Regulation of Cell Growth Laboratory, National Cancer Institute-Frederick Cancer Research Development Center (FCRDC), Frederick, Maryland 21702-1201 USA The mammary gland is a derivative of the ectoderm mammary ducts during puberty and pregnancy. Their whose development begins in the embryo and progresses studies demonstrate that a nuclear signal is converted after birth. The major part of development occurs in the into a secreted signal that can control the fate of adjacent adolescent and adult animal. Hormones produced by the cells in a paracrine fashion. A genetic understanding of pituitary, the ovaries, the uterus, the placenta, and the this and other signaling pathways regulating cell growth mammary gland itself control this process. Over the past in the mammary gland will improve our ability to ma- century, surgical, biological, and genetic tools have been nipulate these processes and thus design strategies for used to gain insight into physiological and pathological prevention and treatment of breast cancer. processes in the mammary gland. Originally, endocrine ablation and reconstitution experiments provided a de- scriptive framework of the role of ovarian and pituitary Tools to investigate signaling pathways hormones (Halban 1900; Nandi 1958). These experi- Several features of the mammary gland provide unique ments demonstrated a clear requirement for the ovarian opportunities for experimental manipulations to inte- steroids estrogen and progesterone for ductal growth and grate systemic, local and cell-specific signaling path- alveolar development (Topper and Freeman 1980).
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Embryology and Development of Salivary Gland 1
    European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 07, Issue 10, 2020 Embryology and development of salivary gland 1. Dr. Sangeetha Priya.P,Dr.N.Anitha, Dr.E.Rajesh, Dr.K.M.K.Masthan Professor, Department of Oral Pathology and Microbiology Sree Balaji Dental College and Hospital Bharath Institute of Higher Education and Research ABSTRACT: Saliva is the mixed glandular secretion which constantly bathes the teeth and the oral mucosa. It is constituted by the secretions of the three paired major salivary glands; the parotid, submandibular and sublingual . Salivary glands are complex in nature. They could be either tubulo acinar, merocrine or exocrine glands secreting mainly saliva. Salivary gland is one of the main soft tissue structures in the maxillofacial area. This review article illustrates the processes that lead to the development,embryology of the salivary glands and how this relates to the adult anatomy. KEY WORDS: salivary gland embryology, salivary gland development, salivary gland anatomy INTRODUCTION: A gland consists of specialized type of cells, wherein they produce products which are used elsewhere in the body. Salivary glands are complex, tubulo acinar, exocrine or merocrine glands secreting mainly saliva. Saliva is the product of the major and minor salivary gland dispersed throughout the oral cavity. It is a complex mixture of organic, inorganic components and water, carrying out several functions. There are three pairs of major salivary glands namely parotid, sub mandibular and sublingual glands in addition to numerous minor salivary glands in the oral cavity1. Together these glands produce saliva, which contains digestive enzymes, antibodies, growth factors, and coating substances essential for eating, speaking, tasting, and oral hygiene2,3.
    [Show full text]
  • Basic Histology (23 Questions): Oral Histology (16 Questions
    Board Question Breakdown (Anatomic Sciences section) The Anatomic Sciences portion of part I of the Dental Board exams consists of 100 test items. They are broken up into the following distribution: Gross Anatomy (50 questions): Head - 28 questions broken down in this fashion: - Oral cavity - 6 questions - Extraoral structures - 12 questions - Osteology - 6 questions - TMJ and muscles of mastication - 4 questions Neck - 5 questions Upper Limb - 3 questions Thoracic cavity - 5 questions Abdominopelvic cavity - 2 questions Neuroanatomy (CNS, ANS +) - 7 questions Basic Histology (23 questions): Ultrastructure (cell organelles) - 4 questions Basic tissues - 4 questions Bone, cartilage & joints - 3 questions Lymphatic & circulatory systems - 3 questions Endocrine system - 2 questions Respiratory system - 1 question Gastrointestinal system - 3 questions Genitouirinary systems - (reproductive & urinary) 2 questions Integument - 1 question Oral Histology (16 questions): Tooth & supporting structures - 9 questions Soft oral tissues (including dentin) - 5 questions Temporomandibular joint - 2 questions Developmental Biology (11 questions): Osteogenesis (bone formation) - 2 questions Tooth development, eruption & movement - 4 questions General embryology - 2 questions 2 National Board Part 1: Review questions for histology/oral histology (Answers follow at the end) 1. Normally most of the circulating white blood cells are a. basophilic leukocytes b. monocytes c. lymphocytes d. eosinophilic leukocytes e. neutrophilic leukocytes 2. Blood platelets are products of a. osteoclasts b. basophils c. red blood cells d. plasma cells e. megakaryocytes 3. Bacteria are frequently ingested by a. neutrophilic leukocytes b. basophilic leukocytes c. mast cells d. small lymphocytes e. fibrocytes 4. It is believed that worn out red cells are normally destroyed in the spleen by a. neutrophils b.
    [Show full text]
  • An Analysis of Benign Human Prostate Offers Insights Into the Mechanism
    www.nature.com/scientificreports OPEN An analysis of benign human prostate ofers insights into the mechanism of apocrine secretion Received: 12 March 2018 Accepted: 22 February 2019 and the origin of prostasomes Published: xx xx xxxx Nigel J. Fullwood 1, Alan J. Lawlor2, Pierre L. Martin-Hirsch3, Shyam S. Matanhelia3 & Francis L. Martin 4 The structure and function of normal human prostate is still not fully understood. Herein, we concentrate on the diferent cell types present in normal prostate, describing some previously unreported types and provide evidence that prostasomes are primarily produced by apocrine secretion. Patients (n = 10) undergoing TURP were prospectively consented based on their having a low risk of harbouring CaP. Scanning electron microscopy and transmission electron microscopy was used to characterise cell types and modes of secretion. Zinc levels were determined using Inductively Coupled Plasma Mass Spectrometry. Although merocrine secretory cells were noted, the majority of secretory cells appear to be apocrine; for the frst time, we clearly show high-resolution images of the stages of aposome secretion in human prostate. We also report a previously undescribed type of epithelial cell and the frst ultrastructural image of wrapping cells in human prostate stroma. The zinc levels in the tissues examined were uniformly high and X-ray microanalysis detected zinc in merocrine cells but not in prostasomes. We conclude that a signifcant proportion of prostasomes, possibly the majority, are generated via apocrine secretion. This fnding provides an explanation as to why so many large proteins, without a signal peptide sequence, are present in the prostatic fuid. Tere are many complications associated with the prostate from middle age onwards, including benign prostatic hyperplasia (BPH) and prostate cancer (PCa).
    [Show full text]
  • Epithelial Tissue
    Epithelial Tissue Epithelial Tissue Tissues - Introduction · a group of similar cells specialized to carry on a particular function · tissue = cells + extracellular matrix nonliving portion of a tissue that supports cells · 4 types epithelial - protection, secretion, absorption connective - support soft body parts and bind structures together muscle - movement nervous - conducts impulses used to help control and coordinate body activities Epithelial Tissues Characteristics Epithelial Classifications · free surface open to the outside or an open · classified based on shape and # of cell layers internal space (apical surface) · shape · basement membrane anchors epithelium to squamous - thin, flat cells underlying connective tissue cuboidal - cube-shaped cells columnar - tall, elongated cells · lack blood vessels · number · readily divide (ex. skin healing) simple - single layer · tightly packed with little extracellular space stratified - 2 or more layers Epithelial Locations Simple Squamous Epithelium · a single layer of thin, flattened cells · cover body surfaces, cover and line internal organs, and compose glands looks like a fried egg · easily damaged skin cells, cells that line the stomach and small intestine, inside your mouth · common at sites of filtration, diffusion, osmosis; cover surfaces · air sacs of the lungs, walls of capillaries, linings cheek cells of blood and lymph vessels intestines skin Epithelial Tissue Simple Cuboidal Epithelium Simple Columnar Epithelium · single layer of cube-shaped cells · single layer of cells
    [Show full text]
  • Exocrine Glands  Ccasslassified Da Acco Rd Ing to
    Glandular tissues Danil Hammoudi.MD A gland is an organ that synthesizes a substance for relfbthlease of substances such •as hormones • breast milk, •often into the bloodstream (endocrine gland) • into cavities inside the body or its outer surface (exocrine gland). Myoepithelial Cells • These are contractile cells that lie within the basal lamina in the secretory ppgortion of glands and intercalated ducts, which form the initial portion of the duct system. • They are instrumental in moving the secretions toward the excretory duct. Histologically, glands are described using some standard vocabulary, with which you should be familiar. exocrine / endocrine Destination of product: Nature of product: serous / mucous / mixed Location of gland: mucosal / submucosal Arrangement of secretory cells: acinus / tubule / cord Number of interconnected units: simple / compound intercalated / striated Duct function: secret/tory / excre tory Duct location: intralobular / interlobular / interlobar Tissue composition: parenchyma / stroma The endocrine system of humans Pineal gland Hypothalamus Posterior pituitary Anterior pituitary Thyroid Parathyroid Thymus Heart Liver Stomach and small intestine Pancreas Adrenal cortex Adrenal medulla Kidney Skin Silverthorn, Human Gonads Physiology, 3rd edition Figure 7-2 Duussgadsapoduoosctless glands that produce hormones Secretions include amino acids, proteins, glycoproteins, and steroids Endocrine Glands More numerous than endocrine glands Secrete their products onto body surfaces (skin) or into body cavities
    [Show full text]
  • Estrogen and Progesterone Treatment Mimicking Pregnancy for Protection from Breast Cancer
    in vivo 22 : 191-202 (2008) Review Estrogen and Progesterone Treatment Mimicking Pregnancy for Protection from Breast Cancer AIRO TSUBURA, NORIHISA UEHARA, YOICHIRO MATSUOKA, KATSUHIKO YOSHIZAWA and TAKASHI YURI Department of Pathology II, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan Abstract. Early age at full-term pregnancy lowers the risk of The etiology of human breast cancer is largely unknown. breast cancer in women; lactation seems to be of marginal Genetic susceptibility, hormonal effects and environmental importance and aborted pregnancy is not associated with factors appear to be major determinants. However, known reduced risk. Although early full-term pregnancy provides genetic risk factors are present in only 10% to 15% of breast protection against breast cancer, first full-term pregnancy in cancer cases (1). Many aspects of hormonal effects confer older women appears to increase the risk. The protective effect increased risk of human breast cancer. The incidence of human of pregnancy has also been observed in rats and mice; in these breast cancer is 100-fold greater for females than for males and animals, lactation has an additive effect and interrupted female reproductive history is a consistent risk factor for pregnancy provides partial but significant protection. human breast cancer (2, 3). Studies indicate that early Pregnancy at a young age ( 3 months) is highly effective, but menarche and late menopause, both of which increase the ≤ pregnancy in older animals ( 4 months) is less effective. duration of ovarian steroid exposure, positively correlate with ≥ Parity-induced protection against mammary cancer in rodents increased risk; bilateral oophorectomy at an early age is can be reproduced by short-term treatment (approximately associated with reduced risk (4).
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]