Pathologic Patterns of the Sebaceous Gland* John S

Total Page:16

File Type:pdf, Size:1020Kb

Pathologic Patterns of the Sebaceous Gland* John S View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector PATHOLOGIC PATTERNS OF THE SEBACEOUS GLAND* JOHN S. STRAUSS, M.D.t AND ALBERT M. KLIGMAN, M.D. By studying the way in which a structurecells which subsequently rupture in the fundus reacts to an imposed experimental stress, oneof the gland. Fragments of the thin eosinophilie can often better understand the changes ex-cell wall, which morphologically resemble kera- hibited in spontaneous dlsease. Much has beentin, persist in the sebum; occasionally the entire learned about the potentialities of the eccrinecell walls survive as ghosts. Furthermore, the in- and apocrine sweat units in this fashion (1—12).dividual oil droplets are separated by keratin- Previous study of the response to injury in thelike trabeculae. A dual potentiality is exhibited sebaceous gland has been restricted mainly to theby sebaceous cells in their capacity to produce changes that occur in the sebaceous duct per sefat predominantly and keratin to a minor de- (13). In this study we have followed the reac-gree. Epidermal cells have this bipotentiality tion of the sebaceous gland itself to a variety ofwith keratin as the major product. cutaneous insults and have correlated the findings with those which occur in disease states. MA.TERIALS AND METRODS The scalp and cheek of post-puberal individuals MOBPOLOGY AND FUNCTION OF were selected for study because the glands here TRN SEACEOUS GLAND are among the largest and most numerous. Biopsy 1.Morphology: The glands of the glabrous skinspecimens were obtained before the experimental are not free but are associated with hair follicles,stresses as well as at varying intervals afterwards. a combination recognized as the pilosebaceousAll specimens were serially sectioned and stained unit. In terminal hair follicles which bear coarsewith hematoxylin and eosin. hairs, as on the scalp and beard, the gland is the The experimental stresses were as follows: minor component of the unit, actually an ap- 1. Contact dermatitis: (a) A moderate primary pendage of the follicle. By contrast, the sebaceousirritant dermatitis was produced by painting the glands of vellus hair follicles are proportionallycheek daily with benzene for one month. larger. Indeed, the vellus hair follicles of the (b) Severe allergic contact dermatitis of the glabrous skin of the face are truly sebaceouscheek was produced by applying 0.25 ml. of 0.1% follicles in which the hair has been reduced to anacetone solutions of dinitrochlorobenzene and inconspicuous appendage of an extraordinarilypentadecyl catechol to sensitive skins. large sebaceous gland. These differences must be 2. Occlusion with adhesive tape: A inch pointed out because this study has focusedsquare area of the cheek was kept constantly primarily upon the sebaceous follicles of the face.covered with plastic adhesive tape for six to 2. Function: (14) The sebaceous gland is aeight weeks. holocrine organ. Sebum is excreted through the 3. Plucking: All of the scalp hairs within a steady casting off of cells, a process of continuoushalf inch area were epilated manually with a growth. The division of relatively undifferenti-forceps; only those individuals in whom complete ated basal cells is followed by progressive trans-extraction was possible were used. formation into mature fat-ladened sebaceous 4. Puncture: In the scalp and on the cheek, multiple punctures through the follicular wall, * Fromthe Department of Dermatology (Don- ald M. Pillsbury, M.D., Director), University ofand probably through the gland itself, were made Pennsylvania School of Medicine, Philadelphia 4,by introducing a fine needle into the long axis Pennsylvania,and The Department of Dermatol-of the follicle and plunging it up and down in ogy (Herbert Mescon M.D., Professor), Boston University School of Medicine, 80 East Concordvarious directions. Street, Boston 18, Massachusetts. 5. Dermabrasion: After freezing with ethyl This work was supported by a grant from The National Institutes of Health, PHS E-1589. chloride, the cheek was abraded to a depth of t Formerly Public Health Service Researchapproximately 1 to 2 mm. with a revolving Fellow of the National Institutes of Health. wire brush. Presented at the Eighteenth Annual Meeting of The Society for Investigative Dermatology, 6. Derinal inflammation: Nodular inflamma- Inc., New York, N. Y. June 1, 1957. tory reactions of varying degrees of severity were 51 52 THE JOURNAL OF INVESTIGATIVE DERMATOLOGY produced by intradermal injections of the fol-fail to undergo the normal sebaceous transforma- lowing substances: (a) sebum (ether extractedtion. In its complete form the entire lobule may from hair), concentrated, and in dilutions upbe occupied by these undifferentiated epithelial to 1 :100; (b) comedones (ground up and sus-cells. The replacement of the gland by undiffer- pended in saline); (c) fatty acids of varying chainentiated epithelial cells may be incomplete with lengths suspended in olive oil; (d) cholesterolvarying percentages of cells showing the presence suspended in olive oil; (e) squalene suspended inof varying amounts of fat. Those cells which are olive oil; (f) turpentine suspended in olive oil;in varying stages of sebaceous transformation at (g) croton oil suspended in olive oil; and (h)the time of injury may fail to mature in the nor- olive oil alone. mal way and instead show apparent excessive 7. Galvanic injury: The ostia of sebaceouskeratinization of the cell walls and retention of follicles on the face were lightly coagulated withthick eosinophilic, keratin-like cytoplasmic tra- a fine needle activated by a low amperage gal-beculae. These excessively keratinized cells are vanic current. This superficial injury did nothardier, do not rupture, and persist as ghosts directly involve the sebaceous gland. clogging up the fundus of the gland. 8. Thallium: 0.25cc of a 0.1% thallium acetate 4. Proliferation: Tongues and cords of indiffer- solution in saline was injected intradermallyent epitheial cells may grow out of the undiffer- into the scalp. entiated lobules into the dermis. 9. Cotchicine: 0.25 cc of a 0.1% coichicine 5. Keratinous metaplasia: The periphery of the solution was injected intradermally into the scalp.gland may be transformed into a stratified 10. Methylcholanthrene: A 0.6% solution ofsquamous epithelium similar to the epidermis. 20-methyicholanthrene in benzene was paintedKeratinized squamae fill the cavity formerly on the cheek daily for one month. The oppositeoccupied solidly by sebaceous cells. control cheek was painted with benzene (see number la). B. Detailed Observations 11. Acne: Biopsy specimens of experimental The experimental stresses divide themselves chloracne as well as acne vulgaris have beeninto four groups: examined. 1) Superficial surface injuries (contact derma- titis, adhesive tape). RESULTS 2) Localized damage to the pilosebaceous A. General Patterns of Response unit (galvanic injury, plucking, puncture, derma- brasion, and dermal inflammation). Several patterns of response were discernible. 3) Cellular inhibitors (colehicine, thallium 1. Destruction: Severe stress destroys the gland totally. The terminal hair follicle is far moreacetate). resistant to destruction. 4) Carcinogens (methyicholanthrene). 2. Atrophy: Following certain stresses, not1. Superficial surface injuries quite severe enough to destroy the gland, involu- tion of varying degrees may occur. There were no important changes in the 3. Failure of 8ebcweous maturation: This change sebaceous glands in four biopsy specimens will be emphasized because it is so characteristic.taken at varying intervals (1—4 weeks) after the The sebaceous cells may become replaced toproduction of allergic or primary irritant type varying degrees by undifferentiated epithelialcontact dermatitis. Similarly, there were no cells. The mature sebaceous cells are cast off andchanges in the sebaceous glands in three speci- are replaced from the basal layer by cells whichmens taken 6 to 9 weeks after the continuous application of adhesive tape. The deep location The use of the word "sebum" throughout thisof the glands protects them from superficial article is not technically correct, for in reality the ether extracted material was "surface lipid" con-injury. Minor changes in the fofficular ostia were sisting of sebum from the sebaceous glands plusnot reflected in the morphology of the gland. the ether soluble products of keratinization. Nev- ertheless, because the collections were made from the scalp where relatively great amounts of sebum2. Localized damage to the pilosebaceous unit are rapidly produced from large sebaceous glands, it is probable that the material was mostly se- a. Plucking: (Figure 1A, 1B) Fourteen biopsy baceous in origin. specimens removed immediately and one to four Fin. 2. Check, one week after repeated punc- ture of the pilosebaceous apparatus. (A) (X50). Ona smaller scale the changes are like those FIG. 1. Scalp—18 clays after plucking. (A) which follow plucking: follicular hvperkeratosis, (X66). The upper portion of the follicle is dilated some glandular atrophy and partial replacement and filled with keratin. Below this the sebaceous of the sehaceous gland with undifferentiated cells. glands are atrophic and have been replaced al- (B) Sehaceous acinus from the same follicle as most completely by cells of the undifferentiated shown in 2A (deeper cut) (X102). The periphery type. The changes mimic comcdo formation. (B) of the gland is mostly undifferentiated
Recommended publications
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • CHAPTER 4 the Integumentary System
    CHAPTER 4 The Integumentary System LEARNING OBJECTIVES Upon completion of this chapter, you should be able to: • Name the two layers of the skin. • Name the accessory structures of the integumentary system. • Build and pronounce medical terms of the integumentary system. • Name the disorders and treatments relating to the integumentary system. • Name the major classifi cations of pharmacologic agents used to treat skin disorders. • Analyze and defi ne the new terms introduced in this chapter. • Interpret abbreviations associated with the integumentary system. 53 54 PART TWO • BODY SYSTEMS Introduction The largest organ of the body is the skin. The skin covers the entire body—more than 20 square feet on average—and weighs about 24 pounds. It is part of the integumentary system, which also includes the accessory structures: hair, nails, and sebaceous (oil) and sudoriferous (sweat) glands. Integumentum is Latin for “covering” or “shelter.” The physician who specializes in the diag- nosis and treatment of skin disorders is called a dermatologist (dermat/o being one of the com- bining forms for skin). Coupling the root dermat/o with the previously learned suffi x -logy gives us the term dermatology , which is the term for the specialty practice that deals with the skin. Word Elements The major word elements that relate to the integumentary system consist of various anatomical components, accessory structures, colors of the skin, and abnormal conditions. The Word Ele- ments table lists many of the roots, their meanings, and examples associated
    [Show full text]
  • Exocrine Glands  Ccasslassified Da Acco Rd Ing to
    Glandular tissues Danil Hammoudi.MD A gland is an organ that synthesizes a substance for relfbthlease of substances such •as hormones • breast milk, •often into the bloodstream (endocrine gland) • into cavities inside the body or its outer surface (exocrine gland). Myoepithelial Cells • These are contractile cells that lie within the basal lamina in the secretory ppgortion of glands and intercalated ducts, which form the initial portion of the duct system. • They are instrumental in moving the secretions toward the excretory duct. Histologically, glands are described using some standard vocabulary, with which you should be familiar. exocrine / endocrine Destination of product: Nature of product: serous / mucous / mixed Location of gland: mucosal / submucosal Arrangement of secretory cells: acinus / tubule / cord Number of interconnected units: simple / compound intercalated / striated Duct function: secret/tory / excre tory Duct location: intralobular / interlobular / interlobar Tissue composition: parenchyma / stroma The endocrine system of humans Pineal gland Hypothalamus Posterior pituitary Anterior pituitary Thyroid Parathyroid Thymus Heart Liver Stomach and small intestine Pancreas Adrenal cortex Adrenal medulla Kidney Skin Silverthorn, Human Gonads Physiology, 3rd edition Figure 7-2 Duussgadsapoduoosctless glands that produce hormones Secretions include amino acids, proteins, glycoproteins, and steroids Endocrine Glands More numerous than endocrine glands Secrete their products onto body surfaces (skin) or into body cavities
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Squamous Epithelium Are Thin, Which Allows for the Rapid Passage of Substances Through Them
    Chapter 2 1st Prof. Anatomy Arsalan (Lecturer Department of Pharmacy University of Peshawar) Tissue is an aggregation of similar cells and their products that perform same function. There are four principal types of tissues in the body: ❑ epithelial tissue: covers body surfaces, lines body cavities and ducts and forms glands ❑ connective tissue: binds, supports, and protects body parts ❑ muscle tissue: produce body and organ movements ❑ nervous tissue: initiates and transmits nerve impulses from one body part to another • Epithelial tissues cover body and organ surfaces, line body cavities and lumina and forms various glands • Derived from endoderm ,ectoderm, and mesoderm • composed of one or more layers of closely packed cells • Perform diverse functions of protection, absorption, excretion and secretion. Highly cellular with low extracellular matrix Polar – has an apical surface exposed to external environment or body cavity, basal layer attached to underlying connective tissue by basement membrane and lateral surfaces attached to each other by intercellular junctions Innervated Avascular – almost all epithelia are devoid of blood vessels, obtain nutrients by diffusion High regeneration capacity Protection: Selective permeability: in GIT facilitate absorption, in kidney facilitate filtration, in lungs facilitate diffusion. Secretions: glandular epithelium form linings of various glands, involved in secretions. Sensations: contain some nerve endings to detect changes in the external environment at their surface Epithelium rests on connective tissue. Between the epithelium and connective tissue is present the basement membrane which is extracellular matrix made up of protein fibers and carbohydrates. Basement membrane attach epithelium to connective tissue and also regulate movement of material between epithelium and connective tissue Epithelial cells are bound together by specialized connections in the plasma membranes called intercellular junctions .
    [Show full text]
  • Tissue Level of Organization 81
    TISSUES OUTLINE 4.1 Epithelial Tissue 81 4.1a Characteristics of Epithelial Tissue 81 4.1b Functions of Epithelial Tissue 82 4 4.1c Specialized Structure of Epithelial Tissue 82 4.1d Classification of Epithelial Tissue 84 4.1e Types of Epithelium 85 4.1f Glands 92 Tissue 4.2 Connective Tissue 95 4.2a Characteristics of Connective Tissue 95 4.2b Functions of Connective Tissue 95 4.2c Development of Connective Tissue 96 Level of 4.2d Classification of Connective Tissue 98 4.3 Body Membranes 108 4.4 Muscle Tissue 109 Organization 4.4a Classification of Muscle Tissue 109 4.5 Nervous Tissue 111 4.5a Characteristics of Neurons 112 4.6 Tissue Change and Aging 112 4.6a Tissue Change 112 4.6b Tissue Aging 113 MODULE 3: TISSUES mck78097_ch04_080-117.indd 80 2/11/11 2:54 PM Chapter Four Tissue Level of Organization 81 he human body is composed of trillions of cells, which are orga- Epithelial (ep-i-thē ́lē -ă l; epi = upon, thēl ē = nipple) tissue T nized into more complex units called tissues. Tissues are groups of covers or lines every body surface and all body cavities; thus it similar cells and extracellular products that carry out a common func- forms both the external and internal lining of many organs, and tion, such as providing protection or facilitating body movement. The it constitutes the majority of glands. An epithelium (pl., epithelia) study of tissues and their relationships within organs is called histology. is composed of one or more layers of closely packed cells between There are four principal types of tissues in the body: epithe- two compartments having different components.
    [Show full text]
  • Frequency Vs. Interval
    Frequency vs. Interval • Milking Frequency – 2 times/day (2X) or 3 times/day (3X) • Milking Interval – 12 hours, 8 hours, etc. • How often do cows want to be milked? Frequency vs. Interval What are the advantages and disadvantages of more frequent milkings? Chemotactic agents: attract PMN into tissues & milk! • Alveoli • Basic milk-producing unit • Lined with epithelial cells • Phagocyte • Cell that engulfs and absorbs bacteria • PMN • Polymorphonuclear neutrophil • First line of defense against invading pathogens during mastitis • Majority cell type accounting for SCC • Macrophages, lymphocytes • Chemotaxis • Movement of an organism in response to a chemical stimulus • Somatic cells and bacteria move according to chemicals in their environment • Where and why would they be moving? • What is a common example of chemotaxis unrelated to milk secretion? Altered Composition During Mastitis Somatic cell counts (SCC) Na, Cl, whey protein (e.g., serum albumin, Ig) lactose, casein, K, α-lactalbumin Altered Composition During Mastitis • Lactose • Synthesis is decreased • Casein • Proteolysis • Proteolytic enzymes from leukocytes and bacteria • Milk fat • Susceptibility of milk fat globule membranes to the action of lipases, resulting in breakdown of triglycerides. Altered Composition During Mastitis • Na+, Cl-, K+ • Electrical potential across apical membrane disrupted • This is the basis of the electrical conductivity methods of detecting mastitis • https://www.youtube.com/watch?v=P-imDC1txWw • Polymorphonuclear neutrophils (PMNs) • Mastitis causes chemotaxis of the cells into the tissue and disruption of epithelial tight junctions • This is the basis of many mastitis detection methods • Albumin, immunoglobulins • Enter the milk via disrupted tight junctional complexes PHYLOGENY & ONTOGENY Phylogeny – the evolutionary development of any animal species (related to mammary gland development) Class Mammalia: Monotremes I.
    [Show full text]
  • 26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms
    26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization
    [Show full text]
  • Morfologia Comparada Dos Ductos Genitais Femininos E Gonópodos Masculinos De Caranguejos Eubrachyura (Saint Laurent, 1980)
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS - RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BIOLOGIA CELULAR E MOLECULAR) MORFOLOGIA COMPARADA DOS DUCTOS GENITAIS FEMININOS E GONÓPODOS MASCULINOS DE CARANGUEJOS EUBRACHYURA (SAINT LAURENT, 1980) LEONARDO PERES DE SOUZA Tese apresentada ao Instituto de Biociências da Universidade Estadual Paulista para a obtenção do titulo de doutor em Ciências Biológicas (Biologia Celular e Molecular). RIO CLARO SÃO PAULO – BRASIL 2013 i UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS - RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BIOLOGIA CELULAR E MOLECULAR) MORFOLOGIA COMPARADA DOS DUCTOS GENITAIS FEMININOS E GONÓPODOS MASCULINOS DE CARANGUEJOS EUBRACHYURA (SAINT LAURENT, 1980) LEONARDO PERES DE SOUZA Orientadora: Maria Izabel Camargo Mathias Tese apresentada ao Instituto de Biociências da Universidade Estadual Paulista para a obtenção do titulo de doutor em Ciências Biológicas (Biologia Celular e Molecular). RIO CLARO SÃO PAULO – BRASIL 2013 ii iii Dedico esta tese A minha querida mãe Dalila Peres de Souza e ao meu pai Anselmo Alves de Souza (in memoriam) pelo apoio, encorajamento, amor e pelos ensinamentos que formaram os alicerces de minha vida. Dedico também a minha esposa, Galyléia, grande amiga, sempre presente na minha vida, pela cumplicidade, companheirismo e apoio. iv AGRADECIMENTOS Um dos grandes prazeres da vida é ter a oportunidade de poder agradecer as pessoas que colaboram, que são gentis, que reconhecem o seu esforço e que entendem ou criticam de forma inteligente seu trabalho. Assim, gostaria de prestar os meus sinceros agradecimentos às pessoas, cuja ajuda direta ou indireta, tornou possível a realização deste trabalho.
    [Show full text]
  • Review Apocrine Secretory Mechanism
    Histol Histopathol (2003) 18: 597-608 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Review Apocrine secretory mechanism: Recent findings and unresolved problems A.P. Gesase1 and Y. Satoh2 1Department of Anatomy/Histology, Muhimbili University College of Health Sciences, Dar es salaam, Tanzania and 2Department of Histology, School of Medicine, Iwate Medical University, Morioka, Japan Summary. Cell secretion is an important physiological Introduction process that ensures smooth metabolic activities, tissue repair and growth and immunological functions in the Apocrine secretion occurs when secretory process is body. It occurs when the intracellular secretory materials accompanied with loss of part of the cell cytoplasm (Fig. are released to the exterior; these may be in the form of 1). The secretory materials may be contained in the lipids, protein or mucous and may travel through a duct secretory vesicles or dissolved in the cytoplasm and system or via blood to reach the target organ. To date during secretion they are released as cytoplasmic three types of secretory mechanisms have been fragments into the glandular lumen or interstitial space characterized, they include apocrine, holocrine and (Roy et al., 1978; Agnew et al., 1980; Ream and exocytosis. Apocrine secretion occurs when the release Principato, 1981; Messelt, 1982; Eggli et al., 1991; of secretory materials is accompanied with loss of part Gesase et al. 1996). It has been described in glands of of cytoplasm. The secretory materials may be contained the genital tract (Nicander et al., 1974; Aumuller and in the secretory vesicles or dissolved in the cytoplasm Adler, 1979; Guggenheim et al., 1979; Hohbach and that is lost during secretion.
    [Show full text]
  • View Sample Pages Here
    3 Introduction When properly developed, communicated and implemented, guidelines improve the quality pathophysiological scars further com- of care that is provided and patient outcomes. pounded by traumatic emotional sequelae Guidelines are intended to support the health- and other comorbidities. care professional’s critical thinking skills and judgment in each case. Traumatic scars can occur as a result of acci- In addition to guiding safer, more effective and dents, acts of violence and other catastrophic consistent outcomes, the authors can only dare events (e.g. disease, burn accident and surgery). to dream that these guidelines will also support better constructed MT research methodology Over the last several decades, advancements in and designs, ultimately leading to the inclusion medical technology have led to improved surgi- of MT professionals in mainstream interprofes- cal techniques and emergency care (Blakeney & sional healthcare. Creson 2002). Simply put, more people are sur- viving injuries that would have been fatal 20 or 30 What Defines Traumatic Scarring? years ago, and an increase in survival rate means an increased need for professionals skilled in The American Psychological Association defines treating people with scars. Working successfully trauma as an emotional response to a terrible with traumatic scars requires expert navigation, event like an accident, sexual assault or natural not only of the physicality of the scar material but disaster (APA 2015). also inclusive of the whole clinical presentation. Scar or cicatrix, derived from the Greek eschara – This book will provide the information needed to meaning scab – is the fibrous replacement tis- help guide the development of that expertise. sue that is laid down following injury or disease Given the complexity of traumatic scars, where (Farlex 2012).
    [Show full text]
  • Physiology of Sweat Gland Function: the Roles of Sweating and Sweat Composition in Human Health Lindsay B
    COMPREHENSIVE REVIEW Physiology of sweat gland function: The roles of sweating and sweat composition in human health Lindsay B. Baker Gatorade Sports Science Institute, PepsiCo R&D Physiology and Life Sciences, Barrington, IL, USA ABSTRACT ARTICLE HISTORY The purpose of this comprehensive review is to: 1) review the physiology of sweat gland function Received 30 April 2019 and mechanisms determining the amount and composition of sweat excreted onto the skin Revised 6 June 2019 surface; 2) provide an overview of the well-established thermoregulatory functions and adaptive Accepted 8 June 2019 responses of the sweat gland; and 3) discuss the state of evidence for potential non-thermo- KEYWORDS regulatory roles of sweat in the maintenance and/or perturbation of human health. The role of Chloride; potassium; sauna; sweating to eliminate waste products and toxicants seems to be minor compared with other sodium; sweat biomarkers; avenues of excretion via the kidneys and gastrointestinal tract; as eccrine glands do not adapt to thermoregulation increase excretion rates either via concentrating sweat or increasing overall sweating rate. Studies suggesting a larger role of sweat glands in clearing waste products or toxicants from the body may be an artifact of methodological issues rather than evidence for selective transport. Furthermore, unlike the renal system, it seems that sweat glands do not conserve water loss or concentrate sweat fluid through vasopressin-mediated water reabsorption. Individuals with high NaCl concentrations in sweat (e.g. cystic fibrosis) have an increased risk of NaCl imbalances during prolonged periods of heavy sweating; however, sweat-induced deficiencies appear to be of minimal risk for trace minerals and vitamins.
    [Show full text]