Coordination of Endothelial Cell Positioning and Fate Specification By

Total Page:16

File Type:pdf, Size:1020Kb

Coordination of Endothelial Cell Positioning and Fate Specification By ARTICLE https://doi.org/10.1038/s41467-021-24414-z OPEN Coordination of endothelial cell positioning and fate specification by the epicardium Pearl Quijada 1,8, Michael A. Trembley1, Adwiteeya Misra1,2, Jacquelyn A. Myers 3,4, Cameron D. Baker 3,4, Marta Pérez-Hernández 5, Jason R. Myers3,4, Ronald A. Dirkx Jr.1, ✉ Ethan David Cohen6, Mario Delmar5, John M. Ashton 3,4 & Eric M. Small 1,2,7 The organization of an integrated coronary vasculature requires the specification of immature 1234567890():,; endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to- mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. 1 Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. 2 Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA. 3 Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. 4 Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. 5 Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA. 6 Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. 7 Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA. 8Present address: Department of Integrative Biology and Physiology, Molecular Biology Institute, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los ✉ Angeles, CA, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:4155 | https://doi.org/10.1038/s41467-021-24414-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24414-z oronary endothelial cells (ECs) organize into an intricate enrichment (Aldh1a2, Tbx18, Tcf21, Wt1) and did not express Cvascular network that provides the heart with oxygen and high levels of cardiomyocyte genes (Tnnt2, Myh7)(Supplementary nutrients and removes metabolic waste. During embryonic Fig. 1e). Increased expression of the mesenchymal cell marker development, localized specification of immature ECs into arterial Pdgfra was observed in a number of GFP+ cells at E16.5, consistent and venous fates occurs within the compact myocardium and sub- with the acquisition of a motile phenotype and differentiation into epicardium, respectively1.ECfatespecification and maturation are interstitial cell types (Supplementary Fig. 1f–h). accomplished through cell-intrinsic transcriptional programs that Single-cell RNA-sequencing (scRNA-seq) was performed on facilitate appropriate interconnections of the blood-supplying and EPDCs captured using the 10× Genomics platform (Fig. 1d). We blood-draining vascular beds2. Analyses of intersomitic and retinal excluded cell doublets based upon unique molecular identifier vessel development identified a population of endothelial tip cells counts, and mitochondrial and ribosomal gene expression that are particularly responsive to secreted angiogenic factors patterns were analyzed and filtered to obtain 3405 (E12.5) and such as vascular endothelial growth factor (Vegf), highlighting 2436 (E16.5) single EPDCs (Supplementary Fig. 2a, b). To define the functional heterogeneity of ECs and revealing mechanisms the cellular heterogeneity within the epicardium, we performed governing vascular pathfinding, remodeling, and maturation3. an integration of E12.5 and E16.5 data sets using canonical Clinical studies aimed at improving perfusion of the ischemic heart correlation analysis (CCA) followed by uniform manifold and skeletal muscle have attempted to recapitulate these develop- approximation and projection (UMAP) using Seurat to rule out mental angiogenic programs4. However, the mechanisms through batch effects (Supplementary Fig. 3a–d), and present a merged which coronary ECs coordinate positional information and fate analysis of E12.5 and E16.5 cells (Fig. 1e).Thisanalysisrevealed specification remain elusive, and current therapeutic strategies have 8 distinct populations (C1-C8) with a considerable contribution failed to generate a robust, functional vascular network. of proliferation state and developmental age to cellular The epicardium consists of a single layer of mesothelial cells on phenotype (Fig. 1e, f and Supplementary Fig. 4a, b). To facilitate the surface of the heart that harbors a population of multipotent the identification of epicardial cell phenotypes, E12.5 and E16.5 progenitors. Following epithelial-to-mesenchymal transition data were merged and a CCA was performed with previously (EMT), epicardium-derived cells (EPDCs) migrate into the compact published scRNA-seq data obtained from the postnatal day 1 myocardium and differentiate into cardiac fibroblast and vascular mouse heart17 (Supplementary Fig. 4c, d). Within these mural cell lineages5–7. Construction of the coronary plexus requires populations, five broad identities emerged, consistent with the integration of epicardium-derived mural cells with arterial and marker genes identified by hierarchical clustering and gene venous ECs derived from the sinus venosus and endocardium5,8,9. ontology (GO) analysis (Fig. 1g–k and Supplementary 5a, b; Genetic or mechanical disruption of the epicardium has also Supplementary Dataset 1): (1) early developmental stage revealed important paracrine contributions to cardiomyocyte progenitor (C1, C3); (2) early EMT (C5); (3) late developmental growth10 and coronary plexus formation11,12. Our previous study stage mesothelial (C2, C4); (4) late developmental stage EMT/ found that epicardial EMT is required for coronary blood vessel mesenchymal (C6, C7); and (5) a rare population of approxi- maturation and integrity, at least partially via contributing vascular mately 40 cells (C8, 1.64% of total) that display an enrichment pericytes to the growing plexus7. in IGF pathway genes and express high levels of Cav1 previously In this study, we performed single-cell RNA-sequencing of implicated in zebrafish heart regeneration13. EPDCs and coronary ECs at critical developmental stages to EPDCs in C1 and C3 are characterized by robust expression of gain insight into the mechanisms responsible for patterning of epicardial gene markers Tbx18 and Upk3b18,19, and GO terms the developing coronary vasculature via distinct epicardial cell associated with proliferation and epithelial cell differentiation, populations13–15. We found that epicardial EMT is not only defining populations of self-replicating E12.5 mesothelial cells responsible for the differentiation of EPDCs into vascular mural (Fig. 1g, h). In contrast, C5 is enriched in E12.5 EPDCs that lineages7, but also restricts the expression of chemotactic signals exhibit a predisposition towards EMT prior to the acquisition of a to discrete populations of mural cells that provide detailed posi- motile gene program, based on the expression of early markers of tional information, reminiscent of the guidepost neuron16. the mesenchymal and smooth muscle phenotype, including Genetic disruption of epicardial EMT in mice leads to profound Pdgfra, Itgb5, Sox9, and Tagln220,21 (Fig. 1g, i). C2 and C4 alterations in EC developmental trajectory, which includes the contain an over-abundance of E16.5 EPDCs that express genes accumulation of an immature EC population within the sub- related to maintenance of mesothelial characteristics (Maf, Btg2), epicardium. Importantly, EC maturation and migration are both likely representing cells that remain on the cardiac surface22,23 directly controlled by angiogenic chemokines, providing a para- (Fig. 1g, j). Genes encoding extracellular matrix proteins such as digm that coordinates EC localization and arteriovenous (AV) Postn, Dpt,andCol3a1 are robustly expressed in E16.5 EPDCs specification. Harnessing the principles that define the spatial in C6 and C7, consistent with the acquisition of a mesenchymal architecture of the developing coronary vasculature may provide phenotype20 (Fig. 1g, k). Of note, these data also revealed unique strategies to stimulate angiogenesis and improve perfusion of vascular programs based upon the emergence of angiogenesis ischemic
Recommended publications
  • Mutant RAMP2 Causes Primary Open-Angle Glaucoma Via the CRLR-Camp Axis
    © American College of Medical Genetics and Genomics ARTICLE Mutant RAMP2 causes primary open-angle glaucoma via the CRLR-cAMP axis Bo Gong, PhD1,2, Houbin Zhang, PhD1, Lulin Huang, PhD1, Yuhong Chen, MD3, Yi Shi, PhD1, Pancy Oi-Sin Tam, MS4, Xianjun Zhu, PhD1, Yi Huang, MD1,5, Bo Lei, PhD6, Periasamy Sundaresan, PhD7, Xi Li, MS1, Linxin Jiang, MS1, Jialiang Yang, MS1, Ying Lin, MS1, Fang Lu, PhD1, Lijia Chen, MRCSEd (Ophth), PhD4, Yuanfeng Li, MS1, Christopher Kai-Shun Leung, MD4, Xiaoxin Guo, MS1, Shanshan Zhang, MS1, Guo Huang, MS1, Yaqi Wu, MS1, Tongdan Zhou, MS1, Ping Shuai, PhD1, Clement Chee-Yung Tham, FRCOphth4, Nicole Weisschuh, PhD8, Subbaiah Ramasamy Krishnadas, MD7, Christian Mardin, MD9, André Reis, PhD10, Jiyun Yang, MD1, Lin Zhang, PhD1,3, Yu Zhou, PhD1, Ziyan Wang, PhD1, Chao Qu, MD11, Peter X. Shaw, PhD12, Chi-Pui Pang, DPhil4, Xinghuai Sun, MD3, Weiquan Zhu, MD5, Dean Yaw Li, MD5, Francesca Pasutto, PhD10 and Zhenglin Yang, MD, PhD1,2 Purpose: Primary open-angle glaucoma (POAG) is the leading 4763 POAG patients, whereas no variants were detected in any cause of irreversible blindness worldwide and mutations in known exon of RAMP2 in 10,953 control individuals. Mutant RAMP2s genes can only explain 5–6% of POAG. This study was conducted aggregated in transfected cells and resulted in damage to the AM- to identify novel POAG-causing genes and explore the pathogenesis RAMP2/CRLR-cAMP signaling pathway. Ablation of one Ramp2 of this disease. allele led to cAMP reduction and retinal ganglion cell death in mice. Methods: Exome sequencing was performed in a Han Chinese Conclusion: This study demonstrated that disruption of RAMP2/ cohort comprising 398 sporadic cases with POAG and 2010 CRLR-cAMP axis could cause POAG and identified a potential controls, followed by replication studies by Sanger sequencing.
    [Show full text]
  • GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients
    biomedicines Article GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients Mahrooyeh Hadizadeh 1,2, Seiied Mojtaba Mohaddes Ardebili 1, Mansoor Salehi 2, Chris Young 3, Fariborz Mokarian 4, James McClellan 5, Qin Xu 6, Mohammad Kazemi 2, Elham Moazam 4, Behzad Mahaki 7 ID and Maziar Ashrafian Bonab 8,* 1 Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; [email protected] (M.H.); [email protected] (S.M.M.A.) 2 Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran; [email protected] (M.S.); [email protected] (M.K.) 3 School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK; [email protected] 4 Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan 8184917911, Iran; [email protected] (F.M.); [email protected] (E.M.) 5 School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; [email protected] 6 School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK; [email protected] 7 Department of Occupational Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; [email protected] 8 Department of Biological Sciences, University of Chester, Chester CH1 4BJ, UK * Correspondence: [email protected]; Tel.: +44-(0)1244-513-056 Received: 31 December 2017; Accepted: 13 February 2018; Published: 22 February 2018 Abstract: Lymphedema is a condition resulting from mutations in various genes essential for lymphatic development and function, which leads to obstruction of the lymphatic system.
    [Show full text]
  • Anti-GJA4 / Connexin 37 Antibody (ARG58815)
    Product datasheet [email protected] ARG58815 Package: 50 μg anti-GJA4 / Connexin 37 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes GJA4 / Connexin 37 Tested Reactivity Hu, Ms, Rat Predict Reactivity Hm Tested Application ICC, IHC-Fr, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name GJA4 / Connexin 37 Species Human Immunogen Synthetic peptide corresponding to aa. 3-17 of Human Connexin 37 (DWGFLEKLLDQVQEH). Conjugation Un-conjugated Alternate Names Connexin-37; Gap junction alpha-4 protein; CX37; Cx37 Application Instructions Application table Application Dilution ICC 0.5 - 1 µg/ml IHC-Fr 1:200 - 1:1000 WB 0.1 - 0.5 µg/ml Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.9% NaCl, 0.2% Na2HPO4, 0.05% Thimerosal, 0.05% Sodium azide and 5% BSA. Preservative 0.05% Thimerosal and 0.05% Sodium azide Stabilizer 5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol GJA4 Gene Full Name gap junction protein, alpha 4, 37kDa Background This gene encodes a member of the connexin gene family.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Amitriptyline-Mediated Cognitive Enhancement in Aged 36Tg Alzheimer’S Disease Mice Is Associated with Neurogenesis and Neurotrophic Activity
    Amitriptyline-Mediated Cognitive Enhancement in Aged 36Tg Alzheimer’s Disease Mice Is Associated with Neurogenesis and Neurotrophic Activity Wayne Chadwick1, Nick Mitchell2, Jenna Caroll3, Yu Zhou1, Sung-Soo Park1, Liyun Wang1, Kevin G. Becker4, Yongqing Zhang4, Elin Lehrmann4, William H. Wood III4, Bronwen Martin5, Stuart Maudsley1* 1 Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 2 Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 3 Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 4 Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 5 Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America Abstract Approximately 35 million people worldwide suffer from Alzheimer’s disease (AD). Existing therapeutics, while moderately effective, are currently unable to stem the widespread rise in AD prevalence. AD is associated with an increase in amyloid beta (Ab) oligomers and hyperphosphorylated tau, along with cognitive impairment and neurodegeneration. Several antidepressants have shown promise in improving cognition and alleviating oxidative stress in AD but have failed as long- term therapeutics. In this study, amitriptyline, an FDA-approved tricyclic antidepressant, was administered orally to aged and cognitively impaired transgenic AD mice (36TgAD). After amitriptyline treatment, cognitive behavior testing demonstrated that there was a significant improvement in both long- and short-term memory retention. Amitriptyline treatment also caused a significant potentiation of non-toxic Ab monomer with a concomitant decrease in cytotoxic dimer Ab load, compared to vehicle-treated 36TgAD controls.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Identification of a GJA3 Mutation in a Chinese Family with Congenital Nuclear Cataract Using Exome Sequencing
    Indian Journal of Biochemistry & Biophysics Vol. 50, August 2013, pp 253-258 Identification of a GJA3 mutation in a Chinese family with congenital nuclear cataract using exome sequencing Yi Guo1,2, Lamei Yuan1, Junhui Yi3, Jingjing Xiao4, Hongbo Xu1, Hongwei Lv1, Wei Xiong5, Wen Zheng1, Liping Guan4, Jianguo Zhang4, Hong Xiang1, Yong Qi1 and Hao Deng1,* 1Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, 2Department of Medical Information, Xiangya School of Medicine, 3Department of Ophthalmology, the Third Xiangya Hospital, 5Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 4BGI-Shenzhen, Shenzhen, Guangdong 518083 Received 29 January 2013; revised 21 May 2013 Congenital cataract, a clinically and genetically heterogeneous lens disorder is defined as any opacity of the lens presented from birth and is responsible for approximately 10% of worldwide childhood poor vision or blindness. To identify the genetic defect responsible for congenital nuclear cataract in a four-generation Chinese Han family, exome and direct Sanger sequencings were conducted and a missense variant c.139G>A (p.D47N) in the gap junction protein-alpha 3 gene (GJA3) was identified. The variant co-segregated with patients of the family and was not observed in unaffected family members or normal controls. The above findings indicated that the variant was a pathogenic mutation. The mutation p.D47N was found in the first extracellular loop (E1) domain of GJA3 protein. Our data suggest that exome sequencing is a powerful tool to discover mutation(s) in cataract, a disorder with high genetic heterogeneity. Our findings may also provide new insights into the cause and diagnosis of congenital nuclear cataract and have implications for genetic counseling.
    [Show full text]
  • Supplementary Table 9. Functional Annotation Clustering Results for the Union (GS3) of the Top Genes from the SNP-Level and Gene-Based Analyses (See ST4)
    Supplementary Table 9. Functional Annotation Clustering Results for the union (GS3) of the top genes from the SNP-level and Gene-based analyses (see ST4) Column Header Key Annotation Cluster Name of cluster, sorted by descending Enrichment score Enrichment Score EASE enrichment score for functional annotation cluster Category Pathway Database Term Pathway name/Identifier Count Number of genes in the submitted list in the specified term % Percentage of identified genes in the submitted list associated with the specified term PValue Significance level associated with the EASE enrichment score for the term Genes List of genes present in the term List Total Number of genes from the submitted list present in the category Pop Hits Number of genes involved in the specified term (category-specific) Pop Total Number of genes in the human genome background (category-specific) Fold Enrichment Ratio of the proportion of count to list total and population hits to population total Bonferroni Bonferroni adjustment of p-value Benjamini Benjamini adjustment of p-value FDR False Discovery Rate of p-value (percent form) Annotation Cluster 1 Enrichment Score: 3.8978262119731335 Category Term Count % PValue Genes List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR GOTERM_CC_DIRECT GO:0005886~plasma membrane 383 24.33290978 5.74E-05 SLC9A9, XRCC5, HRAS, CHMP3, ATP1B2, EFNA1, OSMR, SLC9A3, EFNA3, UTRN, SYT6, ZNRF2, APP, AT1425 4121 18224 1.18857065 0.038655922 0.038655922 0.086284383 UP_KEYWORDS Membrane 626 39.77128335 1.53E-04 SLC9A9, HRAS,
    [Show full text]
  • Transcriptomic Profiling of Ca Transport Systems During
    cells Article Transcriptomic Profiling of Ca2+ Transport Systems during the Formation of the Cerebral Cortex in Mice Alexandre Bouron Genetics and Chemogenomics Lab, Université Grenoble Alpes, CNRS, CEA, INSERM, Bâtiment C3, 17 rue des Martyrs, 38054 Grenoble, France; [email protected] Received: 29 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels.
    [Show full text]
  • The Mesocolon a Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization
    ORIGINAL ARTICLE The Mesocolon A Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization Kevin Culligan, MRCS,∗ Stewart Walsh, FRCSEd,∗ Colum Dunne, PhD,∗ Michael Walsh, PhD,† Siobhan Ryan, MB,‡ Fabio Quondamatteo, MD,‡ Peter Dockery, PhD,§ and J. Calvin Coffey, FRCSI∗¶ uring fetal development, the dorsal mesentery suspends the en- Background: Colonic mobilization requires separation of mesocolon from tire gastrointestinal tract from the posterior abdominal wall. The underlying fascia. Despite the surgical importance of planes formed by these D mesocolon is the adult remnant of that part of the dorsal mesentery structures, no study has formally characterized their microscopic features. associated with the colon.1 In the adult human, the transverse and The aim of this study was to determine the histological and electron micro- lateral sigmoid portions of the mesocolon are mobile whereas the as- scopic appearance of mesocolon, fascia, and retroperitoneum, prior to and cending, descending, and medial sigmoid portions are nonmobile and after colonic mobilization. attached to underlying retroperitoneum.2–4 Classic anatomic teaching Methods: In 24 cadavers, samples were taken from right, transverse, de- maintains that the ascending and descending mesocolon “disappear” scending, and sigmoid mesocolon. In 12 cadavers, specimens were stained during embryogenesis.5,6 In keeping with this, the identification of a with hematoxylin and eosin (3 sections) or Masson trichrome (3 sections). In right or left mesocolon in the adult is frequently depicted as anoma- the second 12 cadavers, lymphatic channels were identified by staining im- lous rather than accepted as an anatomic norm.7 Accordingly, the munohistochemically for podoplanin.
    [Show full text]