Thalassa Moon

Total Page:16

File Type:pdf, Size:1020Kb

Thalassa Moon thalassa-moon.pdf FREE PDF DOWNLOAD NOW!!! Source #2: thalassa-moon.pdf FREE PDF DOWNLOAD There could be some typos (or mistakes) below (html to pdf converter made them): thalassa moon All Images Videos Maps News Shop | My saves 498,000 Results Any time Thalassa (moon) Thalassa or Neptune IV, is the second closest moon to Neptune. It was named after a daughter of Aether and Hemera from Greek mythology. "Thalassa" is also the Greek word for "sea". See all images Thalassa (moon) - Simple English Wikipedia, the free Thalassa encycl… Moon simple.wikipedia.org/wiki/Thalassa_(moon) Thalassa, also known as Neptune IV, is the second-innermost satellite of Neptune. Is this answer helpful? Thalassa was named after sea goddess Thalassa, a daughter of Aether and Hemera from Greek mythology. "Thalassa" is … PEOPLE ALSO ASK Wikipedia Radius: 25.50 miles (41 km) Discovered: Sep 1989 Apparent magnitude: 23.30 Density: 0.69 oz/in³ (1.20 g/cm³) Orbits: Neptune Star system: Solar System People also search for See all (20+) Despina Naiad Galatea Data from: Wikipedia · Freebase Text under CC-BY-SA license Suggest an edit What are Neptune's moons names? How many moons does Neptune have? Is the major moon of Neptune? Who are Neptune's moons named after? Thalassa (moon) - Wikipedia https://en.wikipedia.org/wiki/Thalassa_(moon) Thalassa is irregularly shaped and shows no sign of any geological modification. It is likely that it is a rubble pile re-accreted from fragments of Neptune's original satellites, which were smashed up by perturbations from Triton soon after that moon's capture into a very eccentric initial orbit. Magnitude: 23.3 Radius: 25.476 mi Orbits: Neptune Discoverers: Voyager Imaging Team, Rich… Neptune's Moon Thalassa solarviews.com/eng/thalassa.htm Thalassa appears to be about 80 kilometers (50 miles) in diameter. It orbits Neptune in 7 hours, 30 minutes about 25,200 kilometers (15,700 miles) above the cloud tops. It is irregularly shaped and shows no sign of any geological modification. Thalassa circles the planet in the same direction as Neptune rotates. Neptune · Solar System · Despina Thalassa (moon) Facts for Kids | KidzSearch.com https://wiki.kidzsearch.com/wiki/Thalassa_(moon) Thalassa or Neptune IV, is the second closest moon to Neptune. It was named after a daughter of Aether and Hemera from Greek mythology. … In Depth | Thalassa – Solar System Exploration: NASA Science https://solarsystem.nasa.gov/moons/neptune-moons/thalassa/in-depth Thalassa was named after a daughter of Aether and Hemera from Greek mythology. Thalassa is also the Greek word for sea. The moon was … Thalassa (moon) - Revolvy https://www.revolvy.com/topic/Thalassa (moon)&item_type=topic Sep 16, 1991 · Thalassa (moon) topic. A simulated view of Thalassa orbiting Neptune . Thalassa ( thÉ™- LASS -É™ ; Greek: Θάλασσα), also known as Neptune IV , is the second innermost satellite of Neptune . Thalassa was named after sea goddess Thalassa , a daughter of Aether and Hemera from Greek mythology . "Thalassa" is also the Greek … Thalassa, Moon of Neptune - Universe Guide https://www.universeguide.com/planetmoon/thalassa Thalassa is a Moon that orbits round the planet Neptune. Its orbit circumference, the total distance it travels round its planetary parent is 314,624.22 km. The furthest it … Thalassa (moon) for Kids - Kiddle https://kids.kiddle.co/Thalassa_(moon) Thalassa or Neptune IV, is the second closest moon to Neptune. It was named after a daughter of Aether and Hemera from Greek mythology. … Thalassa (moon) - Simple English Wikipedia, the free ... https://simple.wikipedia.org/wiki/Thalassa_(moon) Thalassa or Neptune IV, is the second closest moon to Neptune. It was named after a daughter of Aether and Hemera from Greek mythology. … Thalassa (moon) | The Science Database Wiki | FANDOM ... thesciencedatabase.wikia.com/wiki/Thalassa_(moon) Thalassa is the second natural satellite of Neptune. It was discovered in 1989 by the Voyager 2 probe. It is not part of any group of Neptunian satellites. Thalassa (Middle Six) | Page 2 | Blue Moon Roleplaying Forums https://bluemoonroleplaying.com/community/threads/36834/page-2 Oct 17, 2012 · Name (Nickname):Jakkon Attire: Mechanic's vest Weapon: None Location: The Comet bar Tagging: Skylar Davies, … Related searches for thalassa moon psamathe moon naiad moon despina moon proteus moon larissa moon triton moon galatea moon neso moon Some results have been removed 1 2 3 4 5 Privacy and Cookies Legal Advertise About our ads Help Feedback © 2018 Microsoft http://uncpbisdegree.com/1/semiconductor-physics-and-devices-manual.pdf http://uncpbisdegree.com/1/srs-wiring-diagram-impala.pdf http://uncpbisdegree.com/1/tally-erp9-complete-user-guide.pdf http://uncpbisdegree.com/1/shibumi-nicholai-hel-1-trevanian.pdf http://riverside-resort.net/1/vogue-dictionary-of-knitting-stitches.pdf http://uncpbisdegree.com/1/the-jewish-holidays-a-journey-through-history.pdf http://riverside-resort.net/1/women-in-economics.pdf http://riverside-resort.net/1/world-class-maintenance-management-terry-wireman.pdf http://uncpbisdegree.com/1/the-cake-mix-doctor-returns-with-160-all-new-recipes.pdf http://uncpbisdegree.com/1/the-cowboy-wins-a-bride-cowboys-of-chance-creek-book-2.pdf .
Recommended publications
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • General Interstellar Issue
    Journal of the British Interplanetary Society VOLUME 72 NO.4 APRIL 2019 General interstellar issue POSITRON PROPULSION for Interplanetary and Interstellar Travel Ryan Weed et al. SPACECRAFT WITH INTERSTELLAR MEDIUM MOMENTUM EXCHANGE REACTIONS: the Potential and Limitations of Propellantless Interstellar Travel Drew Brisbin ARTIFICIAL INTELLIGENCE for Interstellar Travel Andreas M. Hein & Stephen Baxter www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 30 MAY 2019 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper. Eric W. Davis, Institute for Advanced Studies at Austin, USA ■ Illustration references should be cited in Kathryn Denning, York University, Toronto, Canada numerical order in the text; those not cited in the Martyn Fogg, Probability Research Group, UK text risk omission.
    [Show full text]
  • NASA Finds Neptune Moons Locked in 'Dance of Avoidance' 15 November 2019, by Gretchen Mccartney
    NASA finds Neptune moons locked in 'dance of avoidance' 15 November 2019, by Gretchen McCartney Although the dance may appear odd, it keeps the orbits stable, researchers said. "We refer to this repeating pattern as a resonance," said Marina Brozovi?, an expert in solar system dynamics at NASA's Jet Propulsion Laboratory in Pasadena, California, and the lead author of the new paper, which was published Nov. 13 in Icarus. "There are many different types of 'dances' that planets, moons and asteroids can follow, but this one has never been seen before." Far from the pull of the Sun, the giant planets of the Neptune Moon Dance: This animation illustrates how the outer solar system are the dominant sources of odd orbits of Neptune's inner moons Naiad and gravity, and collectively, they boast dozens upon Thalassa enable them to avoid each other as they race dozens of moons. Some of those moons formed around the planet. Credit: NASA alongside their planets and never went anywhere; others were captured later, then locked into orbits dictated by their planets. Some orbit in the opposite direction their planets rotate; others swap orbits Even by the wild standards of the outer solar with each other as if to avoid collision. system, the strange orbits that carry Neptune's two innermost moons are unprecedented, according to Neptune has 14 confirmed moons. Neso, the newly published research. farthest-flung of them, orbits in a wildly elliptical loop that carries it nearly 46 million miles (74 million Orbital dynamics experts are calling it a "dance of kilometers) away from the planet and takes 27 avoidance" performed by the tiny moons Naiad years to complete.
    [Show full text]
  • Filipiak Solar System Book
    Our Solar System Mrs. Filipiak’s Class Our Solar System Mrs. Filipiak’s Class Sun ...............................................................................................7 Michael ........................................................................................7 Mercury ........................................................................................1 Denzel ..........................................................................................1 Mercury ........................................................................................3 Austin ...........................................................................................3 Mercury ........................................................................................5 Madison B ....................................................................................5 Venus ............................................................................................7 Shyla .............................................................................................7 Venus ............................................................................................9 Kenny ...........................................................................................9 Earth ..........................................................................................11 Kaleb ..........................................................................................11 Earth ..........................................................................................13
    [Show full text]
  • Formation of Regular Satellites from Ancient Massive Rings in the Solar System
    ABCDECFFFEE ABCBDEFBEEBCBAEABEB DAFBABEBBE EF !"#CF$ EABBAEBBBBEBA BAFBBEB!EABEBDEBB "AEB#BAEBEBEEABFFEFA$%BEEBCBABFEB#B&EE%B #E B # B B B EF B EE B A B E B B E B !! B CE B B #B AFBBBABE%B#EABEBEAFBB#%BBEAEBCBEEB EB#BEBAEAFB#BAEBBEBDEB%BABE'EEABFEEEAB #BA %B(A %BAB)EAE BEEBEB*BFFEBB(ABAB )EAEBEBBEBEBAFBBEEBBFEB!BBBCBEBEFB EEBEABEBEAFBBC%BABAEBFEBEEBC%BB#BEBEBCB +BAB,B*BAEB!FEBEBFB!E#EEABEEBABFABAE-B E %&AAA)A&*%+F%))( +&%A,*'AAA-.*A)A+%(A/ ABCDF*)A%%%AA)(%%0 A&A1A%+-.(A2A)AFA) /++%A))A3F43!+3&(F *(A))()A+*)0 A F ( ) * ) % A A 05%- E1- 6AAF'(A))(+&%F43AA )+)+FA7A+A+ED-AF4!+ (%AA%A2(2A%A,FD-A A%%2(AFA/+A%A%+8 (A- F*)A,AA(A+F(A3%F* +&+2%%%A*AD0++(&6E A),*+D-.FAB,'()' & τ, 9 6, : 5.F*5('AAF. A+A C 6,9πΣ ,8(0Σ%')&1-4%+)+AA2)A& A'%2&()AADFA' C τ,9DDC F =E *96,:6+6++8(06CCE E>AA>%%046CF 42!)AA:!:"2A@8BABCCCFDD))/F!= .AA)AA)A-=([email protected] C>AA6F2CA:=:54+AEEE'F2F5!= $425)A ED6)FDDF!= ABCDECFFFEE FB.-AA%A%+-D'ACAA.-4D 01E'AAA"A01EF'AB)A"A0/)++6FAA)1- !+D!F.F+FEF>CA-H+D6FF(F.FAF =AFE&(A 016')AAA-.'A&(A/*&AA+& 02)1F++A(A2+)'))0A(F 1-.( )'ABA*)AFAA)A+- 01 A+ ( A 7 ')A A ∆901: - . A 'A ) + , )A&*(&AFA*AA)AA06E-5AF4 !+F9EDDDD,(F<?DD,(F;;DDD,(+)2&-A)2DA(A'A+&( :< $- %(0∆10=7-0CF6-$1D'A∆I∆CEF7∝ ∆ A'A∆J∆CEF7∝0∆KE F*∆CE9D(,& 2)A-H+8&(AA'*AA06?-$1- ((%AF*(AAAD-.&+& ,AA%(A(/)%F(%A*&A- A6A%A,'A2%2AADD C C ; C $ Γ 9Cπ :C7 Σ .
    [Show full text]
  • Resonant Moons of Neptune
    EPSC Abstracts Vol. 13, EPSC-DPS2019-901-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Resonant moons of Neptune Marina Brozović (1), Mark R. Showalter (2), Robert A. Jacobson (1), Robert S. French (2), Jack L. Lissauer (3), Imke de Pater (4) (1) Jet Propulsion Laboratory, California Institute of Technology, California, USA, (2) SETI Institute, California, USA, (3) NASA Ames Research Center, California, USA, (4) University of California Berkeley, California, USA Abstract We used integrated orbits to fit astrometric data of the 2. Methods regular moons of Neptune. We found a 73:69 inclination resonance between Naiad and Thalassa, the 2.1 Observations two innermost moons. Their resonant argument librates around 180° with an average amplitude of The astrometric data cover the period from 1981-2016, ~66° and a period of ~1.9 years. This is the first fourth- with the most significant amount of data originating order resonance discovered between the moons of the from the Voyager 2 spacecraft and HST. Voyager 2 outer planets. The resonance enabled an estimate of imaged all regular satellites except Hippocamp the GMs for Naiad and Thalassa, GMN= between 1989 June 7 and 1989 August 24. The follow- 3 -2 3 0.0080±0.0043 km s and GMT=0.0236±0.0064 km up observations originated from several Earth-based s-2. More high-precision astrometry of Naiad and telescopes, but the majority were still obtained by HST. Thalassa will help better constrain their masses. The [4] published the latest set of the HST astrometry GMs of Despina, Galatea, and Larissa are more including the discovery and follow up observations of difficult to measure because they are not in any direct Hippocamp.
    [Show full text]
  • Artificial Intelligence for Interstellar Travel
    Artificial Intelligence for Interstellar Travel Andreas M. Hein1 and Stephen Baxter2 1Initiative for Interstellar Studies, Bone Mill, New Street, Charfield, GL12 8ES, United Kingdom 2c/o Christopher Schelling, Selectric Artists, 9 Union Square 123, Southbury, CT 06488, USA. November 20, 2018 Abstract The large distances involved in interstellar travel require a high degree of spacecraft autonomy, realized by artificial intelligence. The breadth of tasks artificial intelligence could perform on such spacecraft involves maintenance, data collection, designing and constructing an infrastructure using in-situ resources. Despite its importance, exist- ing publications on artificial intelligence and interstellar travel are limited to cursory descriptions where little detail is given about the nature of the artificial intelligence. This article explores the role of artificial intelligence for interstellar travel by compiling use cases, exploring capabilities, and proposing typologies, system and mission archi- tectures. Estimations for the required intelligence level for specific types of interstellar probes are given, along with potential system and mission architectures, covering those proposed in the literature but also presenting novel ones. Finally, a generic design for interstellar probes with an AI payload is proposed. Given current levels of increase in computational power, a spacecraft with a similar computational power as the human brain would have a mass from dozens to hundreds of tons in a 2050 { 2060 timeframe. Given that the advent of the first interstellar missions and artificial general intelligence are estimated to be by the mid-21st century, a more in-depth exploration of the re- lationship between the two should be attempted, focusing on neglected areas such as protecting the artificial intelligence payload from radiation in interstellar space and the role of artificial intelligence in self-replication.
    [Show full text]
  • Perfect Little Planet Educator's Guide
    Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet.
    [Show full text]
  • Neptune and Triton: Essential Pieces of the Solar System Puzzle A
    Neptune and Triton: Essential pieces of the Solar System puzzle A. Masters, N. Achilleos, C.B. Agnor, S. Campagnola, S. Charnoz, B. Christophe, A.J. Coates, L.N. Fletcher, G.H. Jones, L. Lamy, et al. To cite this version: A. Masters, N. Achilleos, C.B. Agnor, S. Campagnola, S. Charnoz, et al.. Neptune and Triton: Essential pieces of the Solar System puzzle. Planetary and Space Science, Elsevier, 2014, 104, pp.108- 121. 10.1016/j.pss.2014.05.008. hal-02547155 HAL Id: hal-02547155 https://hal.archives-ouvertes.fr/hal-02547155 Submitted on 1 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Neptune and Triton: Essential pieces of the Solar System puzzle 2 3 A. Mastersa, N. Achilleosb,c, C. B. Agnord, S. Campagnolaa, S. Charnoze,f, 4 B. Christopheg, A. J. Coatesc,h, L. N. Fletcheri, G. H. Jonesc,h, L. Lamyj, F. Marzarik, 5 N. Nettelmannl, J. Ruizm, R. Ambrosin, N. Andreo, A. Bhardwajp, J. J. Fortneyl, 6 C. J. Hansenq, R. Helledr, G. Moragas-Klostermeyers, G. Ortont, L. Rayb,c, S. 7 Reynaudu, N. Sergisv, R. Sramas, M.
    [Show full text]
  • Astronomy Magazine 2020 Index
    Astronomy Magazine 2020 Index SUBJECT A AAVSO (American Association of Variable Star Observers), Spectroscopic Database (AVSpec), 2:15 Abell 21 (Medusa Nebula), 2:56, 59 Abell 85 (galaxy), 4:11 Abell 2384 (galaxy cluster), 9:12 Abell 3574 (galaxy cluster), 6:73 active galactic nuclei (AGNs). See black holes Aerojet Rocketdyne, 9:7 airglow, 6:73 al-Amal spaceprobe, 11:9 Aldebaran (Alpha Tauri) (star), binocular observation of, 1:62 Alnasl (Gamma Sagittarii) (optical double star), 8:68 Alpha Canum Venaticorum (Cor Caroli) (star), 4:66 Alpha Centauri A (star), 7:34–35 Alpha Centauri B (star), 7:34–35 Alpha Centauri (star system), 7:34 Alpha Orionis. See Betelgeuse (Alpha Orionis) Alpha Scorpii (Antares) (star), 7:68, 10:11 Alpha Tauri (Aldebaran) (star), binocular observation of, 1:62 amateur astronomy AAVSO Spectroscopic Database (AVSpec), 2:15 beginner’s guides, 3:66, 12:58 brown dwarfs discovered by citizen scientists, 12:13 discovery and observation of exoplanets, 6:54–57 mindful observation, 11:14 Planetary Society awards, 5:13 satellite tracking, 2:62 women in astronomy clubs, 8:66, 9:64 Amateur Telescope Makers of Boston (ATMoB), 8:66 American Association of Variable Star Observers (AAVSO), Spectroscopic Database (AVSpec), 2:15 Andromeda Galaxy (M31) binocular observations of, 12:60 consumption of dwarf galaxies, 2:11 images of, 3:72, 6:31 satellite galaxies, 11:62 Antares (Alpha Scorpii) (star), 7:68, 10:11 Antennae galaxies (NGC 4038 and NGC 4039), 3:28 Apollo missions commemorative postage stamps, 11:54–55 extravehicular activity
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • 7.5 X 12 Long Title.P65
    Cambridge University Press 978-0-521-85371-2 - Planetary Sciences, Second Edition Imke de Pater and Jack J. Lissauer Excerpt More information 1 Introduction Socrates: Shall we set down astronomy among the subjects of study? Glaucon: I think so, to know something about the seasons, the months and the years is of use for military purposes, as well as for agriculture and for navigation. Socrates: It amuses me to see how afraid you are, lest the common herd of people should accuse you of recommending useless studies. Plato, The Republic VII The wonders of the night sky, the Moon and the Sun have systems were seen around all four giant planets. Some of fascinated mankind for many millennia. Ancient civiliza- the new discoveries have been explained, whereas others tions were particularly intrigued by several brilliant ‘stars’ remain mysterious. that move among the far more numerous ‘fixed’ (station- Four comets and six asteroids have thus far been ary) stars. The Greeks used the word πλανητηζ, meaning explored by close-up spacecraft, and there have been sev- wandering star, to refer to these objects. Old drawings and eral missions to study the Sun and the solar wind. The manuscripts by people from all over the world, such as Sun’s gravitational domain extends thousands of times the the Chinese, Greeks and Anasazi, attest to their interest in distance to the farthest known planet, Neptune. Yet the vast comets, solar eclipses and other celestial phenomena. outer regions of the Solar System are so poorly explored The Copernican–Keplerian–Galilean–Newtonian rev- that many bodies remain to be detected, possibly including olution in the sixteenth and seventeenth centuries com- some of planetary size.
    [Show full text]