Filipiak Solar System Book

Total Page:16

File Type:pdf, Size:1020Kb

Filipiak Solar System Book Our Solar System Mrs. Filipiak’s Class Our Solar System Mrs. Filipiak’s Class Sun ...............................................................................................7 Michael ........................................................................................7 Mercury ........................................................................................1 Denzel ..........................................................................................1 Mercury ........................................................................................3 Austin ...........................................................................................3 Mercury ........................................................................................5 Madison B ....................................................................................5 Venus ............................................................................................7 Shyla .............................................................................................7 Venus ............................................................................................9 Kenny ...........................................................................................9 Earth ..........................................................................................11 Kaleb ..........................................................................................11 Earth ..........................................................................................13 Hunter ........................................................................................13 Mars ...........................................................................................15 Jorge............................................................................................ 15 Mars ...........................................................................................17 Devin ..........................................................................................17 Jupiter .........................................................................................19 Marreon .....................................................................................19 Jupiter .........................................................................................21 Dalton E. ....................................................................................21 Saturn .........................................................................................23 Crystal ........................................................................................23 Saturn .........................................................................................25 Patience ......................................................................................25 Uranus ........................................................................................27 Alexis ..........................................................................................27 Uranus ........................................................................................29 Hannah ......................................................................................29 Neptune ......................................................................................31 Mackenzie ..................................................................................31 Neptune ......................................................................................33 Timothy ......................................................................................33 Pluto ...........................................................................................35 Gracie .........................................................................................35 Moon ..........................................................................................37 Roy .............................................................................................37 Moon ..........................................................................................39 Makayla ......................................................................................39 Sun Michael The Sun is in the middle of the solar systom. The color of the Sun is red, yellow, and ornge.And it has lots of desings.And it also has over 1,000 black spots all over the Sun. ( planets.com) The location of the sun is in the middle of the solar systom.And the size of the the sun is a middum star.The Sun the sun is a midum sized star. (planets.com) The sun is in the middle of our solar systom. The Sun has zero moons. It is not suppose to have a moon.The Sun solar flares use a large amount of solar energy. ( plants for kids) The suns hot gassesthat move very fast.solar (systom.com) the tepetur on the Sun is 6,000 dagress . That is very hot.(facts about the Sun.) The color of the sun is ornge, red, and yellow.And the desing of the is that it has fire rings some times. ( solar systom app on Ipod) The size of the Sun is a smaller star. The location of the Sun is in the middle of our solar systom.( Space for kids.) The Sun has no moons. the Sun has over 1,000 blaack spots. References Solar System app on Ipod (Colors of the Sun) Facts about the sun Mercury Denzel Mercury is a planet in our solar system. The color of Mercury is brown.It appears brown because it is the closes planet to the sun and the heat surrounds it.(Space and Solar System websites). The (space and solar system website) says Mercury designs are circles. The size of Mercury is 2,476 km in diameter. (Solar System) .It is also the second smallest planet in the solar system. It is also the closes planet to the sun it is 1,476 yards away from the sun. The planet I’m researching doesn’t have any moons because it is the closes planet to the sun(planetsforkids.com). It only takes 88 earth days for Mercury to go around the sun.(planetsforkids.com). It takes 59 days for Mercury to go day to night.(Peter and Paul The Galaxy website). Mercury has no atmosphere around it to protect it from the sun ip retain any heat when it rotates on it’s axis. (planetsforkids.com) The planet i’m researching is one of the hottest planet in the solar system. (PLANETS FOR KIDS .COM) References PLANETS FOR KIDS .COM PETER AND PAUL THE GALAXY WEBSITE SOLAR SYSTEM SPACE AND SOLAR SYSTEM WEBSITE Mercury Austin Mercury is a planet of the solar system. The color of my planet is red because it looks like fire. (11 Planets) The design of my planet has circles, craters, sharp cliffs,and lava clouds. (Solar System) The size of my planet is 4,879 km another fact about the size of Mercury is that he is 59,910,000 km. [facts about planets]Mercury is the first planet from the sun. (A Book About Planets and Stars) The unique features about Mercury is it travles faster than any other planet .It speeds around the sun 30 miles per second (11 Planets) Mercury has no moons. (11 Planets) The three facts about Mercury are he is a lot faster than the other 11 planets, another fact is he takes 88 earth days to orbit the sun, another fact is he makes the sky glare even at night. References 11 Planets Solar System A Book About Planets and Stars Mercury Madison B Mercury is a planet in our solar system. Mercury is gray and has holes because of craters. Mercury has holes all around from craters. (Mercury) Mercury is 4,880 km in diameter. Mercury is the first planet near the sun.(Science.NationalGeographic.com). Mercury is 43 million miles 70 million kilometers from the sun. Mercury is the closest planet to the sun. (Nineplanet.com) Mercury has no moons at all. ( A book about planets and stars). Mercury’s surface can reach 800 degrees Fahrenheit. ( Science.NationalGeographic.com). Only one spacecraft has ever visited Mercury. It takes Earth 88 Earth days rotate. ( A book about planets and stars). These are some facts about Mercury. References A Book About Planets and Stars, Betty Polisar Reigot Mercury, Steven L. Kipp Nineplanets.org Science.NationalGeographic.com Venus Shyla The planet I am going to be talking about is Venus. Im also going to be talking about the colors, desigh, size ,location ,features, and moons. Venus is red with a little of black and yellow. It is this color because it is one of the hottest planets and the brightest planet. [planet.com] venus has craters and mountains. Also venus is the second planet from the sun. Venus is the sixth largest planet. The mass of venus is 4.86732 billion kilograms. The diameter is 7,528.8. [planet for kids] and [nine planets] Venus has no moons not one. It takes venus 243 days rotat It also takes venus 224 days to orbit the sun.[ the solar system] venus surface is about 400 degrees c. Also venus is about 900 degrees F. Then at night venus is 100 degrees F . A year in venus is 225 days. Venus is called earths twin.The great planet venus. References Planet.com Planetforkids.com Nineplanets.com The Solar System Venus Kenny Venus is a color of our solar system The color of Venus is orange,black,and yellow.The size of Venus is 7,321 miles diameter. Venus’s location is second planet from the sun.It is the planet before Earth. Venus is the hottest planet of all. Also Venus has no moons.(Venus) Venus is orange and black. it is orange and black because it is the most hottest planet of all I think it looks like Halloween colors.Western people call Venus the evening star.The tempature on venus is about 900 dagrees. Venus is 7,321 miles diameter.Venus is the second planet from the Sun.Venus is the planet from Earth.Venus is one of the
Recommended publications
  • Transit Timing Analysis of the Hot Jupiters WASP-43B and WASP-46B and the Super Earth Gj1214b
    Transit timing analysis of the hot Jupiters WASP-43b and WASP-46b and the super Earth GJ1214b Mathias Polfliet Promotors: Michaël Gillon, Maarten Baes 1 Abstract Transit timing analysis is proving to be a promising method to detect new planetary partners in systems which already have known transiting planets, particularly in the orbital resonances of the system. In these resonances we might be able to detect Earth-mass objects well below the current detection and even theoretical (due to stellar variability) thresholds of the radial velocity method. We present four new transits for WASP-46b, four new transits for WASP-43b and eight new transits for GJ1214b observed with the robotic telescope TRAPPIST located at ESO La Silla Observatory, Chile. Modelling the data was done using several Markov Chain Monte Carlo (MCMC) simulations of the new transits with old data and a collection of transit timings for GJ1214b from published papers. For the hot Jupiters this lead to a general increase in accuracy for the physical parameters of the system (for the mass and period we found: 2.034±0.052 MJup and 0.81347460±0.00000048 days and 2.03±0.13 MJup and 1.4303723±0.0000011 days for WASP-43b and WASP-46b respectively). For GJ1214b this was not the case given the limited photometric precision of TRAPPIST. The additional timings however allowed us to constrain the period to 1.580404695±0.000000084 days and the RMS of the TTVs to 16 seconds. We investigated given systems for Transit Timing Variations (TTVs) and variations in the other transit parameters and found no significant (3sv) deviations.
    [Show full text]
  • The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
    Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring.
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • General Interstellar Issue
    Journal of the British Interplanetary Society VOLUME 72 NO.4 APRIL 2019 General interstellar issue POSITRON PROPULSION for Interplanetary and Interstellar Travel Ryan Weed et al. SPACECRAFT WITH INTERSTELLAR MEDIUM MOMENTUM EXCHANGE REACTIONS: the Potential and Limitations of Propellantless Interstellar Travel Drew Brisbin ARTIFICIAL INTELLIGENCE for Interstellar Travel Andreas M. Hein & Stephen Baxter www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 30 MAY 2019 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper. Eric W. Davis, Institute for Advanced Studies at Austin, USA ■ Illustration references should be cited in Kathryn Denning, York University, Toronto, Canada numerical order in the text; those not cited in the Martyn Fogg, Probability Research Group, UK text risk omission.
    [Show full text]
  • Self-Organizing Systems in Planetary Physics: Harmonic Resonances Of
    Self-Organizing Systems in Planetary Physics : Harmonic Resonances of Planet and Moon Orbits Markus J. Aschwanden1 1) Lockheed Martin, Solar and Astrophysics Laboratory, Org. A021S, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304, USA; e-mail: [email protected] ABSTRACT The geometric arrangement of planet and moon orbits into a regularly spaced pattern of distances is the result of a self-organizing system. The positive feedback mechanism that operates a self-organizing system is accomplished by harmonic orbit resonances, leading to long-term stable planet and moon orbits in solar or stellar systems. The distance pattern of planets was originally described by the empirical Titius-Bode law, and by a generalized version with a constant geometric progression factor (corresponding to logarithmic spacing). We find that the orbital periods Ti and planet distances Ri from the Sun are not consistent with logarithmic spacing, 2/3 2/3 but rather follow the quantized scaling (Ri+1/Ri) = (Ti+1/Ti) = (Hi+1/Hi) , where the harmonic ratios are given by five dominant resonances, namely (Hi+1 : Hi)=(3:2), (5 : 3), (2 : 1), (5 : 2), (3 : 1). We find that the orbital period ratios tend to follow the quantized harmonic ratios in increasing order. We apply this harmonic orbit resonance model to the planets and moons in our solar system, and to the exo-planets of 55 Cnc and HD 10180 planetary systems. The model allows us a prediction of missing planets in each planetary system, based on the quasi- regular self-organizing pattern of harmonic orbit resonance zones. We predict 7 (and 4) missing exo-planets around the star 55 Cnc (and HD 10180).
    [Show full text]
  • NASA Finds Neptune Moons Locked in 'Dance of Avoidance' 15 November 2019, by Gretchen Mccartney
    NASA finds Neptune moons locked in 'dance of avoidance' 15 November 2019, by Gretchen McCartney Although the dance may appear odd, it keeps the orbits stable, researchers said. "We refer to this repeating pattern as a resonance," said Marina Brozovi?, an expert in solar system dynamics at NASA's Jet Propulsion Laboratory in Pasadena, California, and the lead author of the new paper, which was published Nov. 13 in Icarus. "There are many different types of 'dances' that planets, moons and asteroids can follow, but this one has never been seen before." Far from the pull of the Sun, the giant planets of the Neptune Moon Dance: This animation illustrates how the outer solar system are the dominant sources of odd orbits of Neptune's inner moons Naiad and gravity, and collectively, they boast dozens upon Thalassa enable them to avoid each other as they race dozens of moons. Some of those moons formed around the planet. Credit: NASA alongside their planets and never went anywhere; others were captured later, then locked into orbits dictated by their planets. Some orbit in the opposite direction their planets rotate; others swap orbits Even by the wild standards of the outer solar with each other as if to avoid collision. system, the strange orbits that carry Neptune's two innermost moons are unprecedented, according to Neptune has 14 confirmed moons. Neso, the newly published research. farthest-flung of them, orbits in a wildly elliptical loop that carries it nearly 46 million miles (74 million Orbital dynamics experts are calling it a "dance of kilometers) away from the planet and takes 27 avoidance" performed by the tiny moons Naiad years to complete.
    [Show full text]
  • Astro Vol.7 Issue 4
    NEWSLETTER Year 7, Issue 04 PSSP - News The First NASA Videoconference Prepared by Elzbieta Gwiazda-Szer On the 15th of January there was a videoconference between the Rota College (Izmir, Turkey), School4Child (Lodz, Poland) and NASA’s Marshall Space Flight Center in Huntsville, Alabama in the U.S.A.. It was a historical day for both schools since it was their first videoconference with a NASA Center. Our school prepared for that during the classes conducted by Ms. Elzbieta Gwiazda-Szer . The classes and videoconference’s theme was "Toys in Space". In class, students got familiar with Newton's three principles of dynamics, they learned about gravity and microgravity. In groups, students sought answers to questions concerning the behavior of their toys in space. Their considerations related to a football , a jump rope , a kendama and a paper boomerang . Some students have modified their toys in order to improve the fun efficiency in microgravity. Our students also had the opportunity to meet with their ePals, with whom they are in touch via emails. This is the third year we have been partners of the program PSSP - Partner School Science Program. The videoconferencing has been received with great enthusiasm by both our students and students from Turkey. Pages 1 Technology Lunar Time Lapse Panorama including Yutu Rover Image Credit: CNSA, Chinanews, Kenneth Kremer & Marco Di Lorenzo Where has the Yutu rover been on the Moon? Arriving in 2013 mid-December, the Chinese Yutu robotic rover has spent some of the past month and a half exploring Mare Imbrium on Earth's Moon.
    [Show full text]
  • Formation of Regular Satellites from Ancient Massive Rings in the Solar System
    ABCDECFFFEE ABCBDEFBEEBCBAEABEB DAFBABEBBE EF !"#CF$ EABBAEBBBBEBA BAFBBEB!EABEBDEBB "AEB#BAEBEBEEABFFEFA$%BEEBCBABFEB#B&EE%B #E B # B B B EF B EE B A B E B B E B !! B CE B B #B AFBBBABE%B#EABEBEAFBB#%BBEAEBCBEEB EB#BEBAEAFB#BAEBBEBDEB%BABE'EEABFEEEAB #BA %B(A %BAB)EAE BEEBEB*BFFEBB(ABAB )EAEBEBBEBEBAFBBEEBBFEB!BBBCBEBEFB EEBEABEBEAFBBC%BABAEBFEBEEBC%BB#BEBEBCB +BAB,B*BAEB!FEBEBFB!E#EEABEEBABFABAE-B E %&AAA)A&*%+F%))( +&%A,*'AAA-.*A)A+%(A/ ABCDF*)A%%%AA)(%%0 A&A1A%+-.(A2A)AFA) /++%A))A3F43!+3&(F *(A))()A+*)0 A F ( ) * ) % A A 05%- E1- 6AAF'(A))(+&%F43AA )+)+FA7A+A+ED-AF4!+ (%AA%A2(2A%A,FD-A A%%2(AFA/+A%A%+8 (A- F*)A,AA(A+F(A3%F* +&+2%%%A*AD0++(&6E A),*+D-.FAB,'()' & τ, 9 6, : 5.F*5('AAF. A+A C 6,9πΣ ,8(0Σ%')&1-4%+)+AA2)A& A'%2&()AADFA' C τ,9DDC F =E *96,:6+6++8(06CCE E>AA>%%046CF 42!)AA:!:"2A@8BABCCCFDD))/F!= .AA)AA)A-=([email protected] C>AA6F2CA:=:54+AEEE'F2F5!= $425)A ED6)FDDF!= ABCDECFFFEE FB.-AA%A%+-D'ACAA.-4D 01E'AAA"A01EF'AB)A"A0/)++6FAA)1- !+D!F.F+FEF>CA-H+D6FF(F.FAF =AFE&(A 016')AAA-.'A&(A/*&AA+& 02)1F++A(A2+)'))0A(F 1-.( )'ABA*)AFAA)A+- 01 A+ ( A 7 ')A A ∆901: - . A 'A ) + , )A&*(&AFA*AA)AA06E-5AF4 !+F9EDDDD,(F<?DD,(F;;DDD,(+)2&-A)2DA(A'A+&( :< $- %(0∆10=7-0CF6-$1D'A∆I∆CEF7∝ ∆ A'A∆J∆CEF7∝0∆KE F*∆CE9D(,& 2)A-H+8&(AA'*AA06?-$1- ((%AF*(AAAD-.&+& ,AA%(A(/)%F(%A*&A- A6A%A,'A2%2AADD C C ; C $ Γ 9Cπ :C7 Σ .
    [Show full text]
  • Resonant Moons of Neptune
    EPSC Abstracts Vol. 13, EPSC-DPS2019-901-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Resonant moons of Neptune Marina Brozović (1), Mark R. Showalter (2), Robert A. Jacobson (1), Robert S. French (2), Jack L. Lissauer (3), Imke de Pater (4) (1) Jet Propulsion Laboratory, California Institute of Technology, California, USA, (2) SETI Institute, California, USA, (3) NASA Ames Research Center, California, USA, (4) University of California Berkeley, California, USA Abstract We used integrated orbits to fit astrometric data of the 2. Methods regular moons of Neptune. We found a 73:69 inclination resonance between Naiad and Thalassa, the 2.1 Observations two innermost moons. Their resonant argument librates around 180° with an average amplitude of The astrometric data cover the period from 1981-2016, ~66° and a period of ~1.9 years. This is the first fourth- with the most significant amount of data originating order resonance discovered between the moons of the from the Voyager 2 spacecraft and HST. Voyager 2 outer planets. The resonance enabled an estimate of imaged all regular satellites except Hippocamp the GMs for Naiad and Thalassa, GMN= between 1989 June 7 and 1989 August 24. The follow- 3 -2 3 0.0080±0.0043 km s and GMT=0.0236±0.0064 km up observations originated from several Earth-based s-2. More high-precision astrometry of Naiad and telescopes, but the majority were still obtained by HST. Thalassa will help better constrain their masses. The [4] published the latest set of the HST astrometry GMs of Despina, Galatea, and Larissa are more including the discovery and follow up observations of difficult to measure because they are not in any direct Hippocamp.
    [Show full text]
  • Artificial Intelligence for Interstellar Travel
    Artificial Intelligence for Interstellar Travel Andreas M. Hein1 and Stephen Baxter2 1Initiative for Interstellar Studies, Bone Mill, New Street, Charfield, GL12 8ES, United Kingdom 2c/o Christopher Schelling, Selectric Artists, 9 Union Square 123, Southbury, CT 06488, USA. November 20, 2018 Abstract The large distances involved in interstellar travel require a high degree of spacecraft autonomy, realized by artificial intelligence. The breadth of tasks artificial intelligence could perform on such spacecraft involves maintenance, data collection, designing and constructing an infrastructure using in-situ resources. Despite its importance, exist- ing publications on artificial intelligence and interstellar travel are limited to cursory descriptions where little detail is given about the nature of the artificial intelligence. This article explores the role of artificial intelligence for interstellar travel by compiling use cases, exploring capabilities, and proposing typologies, system and mission archi- tectures. Estimations for the required intelligence level for specific types of interstellar probes are given, along with potential system and mission architectures, covering those proposed in the literature but also presenting novel ones. Finally, a generic design for interstellar probes with an AI payload is proposed. Given current levels of increase in computational power, a spacecraft with a similar computational power as the human brain would have a mass from dozens to hundreds of tons in a 2050 { 2060 timeframe. Given that the advent of the first interstellar missions and artificial general intelligence are estimated to be by the mid-21st century, a more in-depth exploration of the re- lationship between the two should be attempted, focusing on neglected areas such as protecting the artificial intelligence payload from radiation in interstellar space and the role of artificial intelligence in self-replication.
    [Show full text]
  • PDS4 Context List
    Target Context List Name Type LID 136108 HAUMEA Planet urn:nasa:pds:context:target:planet.136108_haumea 136472 MAKEMAKE Planet urn:nasa:pds:context:target:planet.136472_makemake 1989N1 Satellite urn:nasa:pds:context:target:satellite.1989n1 1989N2 Satellite urn:nasa:pds:context:target:satellite.1989n2 ADRASTEA Satellite urn:nasa:pds:context:target:satellite.adrastea AEGAEON Satellite urn:nasa:pds:context:target:satellite.aegaeon AEGIR Satellite urn:nasa:pds:context:target:satellite.aegir ALBIORIX Satellite urn:nasa:pds:context:target:satellite.albiorix AMALTHEA Satellite urn:nasa:pds:context:target:satellite.amalthea ANTHE Satellite urn:nasa:pds:context:target:satellite.anthe APXSSITE Equipment urn:nasa:pds:context:target:equipment.apxssite ARIEL Satellite urn:nasa:pds:context:target:satellite.ariel ATLAS Satellite urn:nasa:pds:context:target:satellite.atlas BEBHIONN Satellite urn:nasa:pds:context:target:satellite.bebhionn BERGELMIR Satellite urn:nasa:pds:context:target:satellite.bergelmir BESTIA Satellite urn:nasa:pds:context:target:satellite.bestia BESTLA Satellite urn:nasa:pds:context:target:satellite.bestla BIAS Calibrator urn:nasa:pds:context:target:calibrator.bias BLACK SKY Calibration Field urn:nasa:pds:context:target:calibration_field.black_sky CAL Calibrator urn:nasa:pds:context:target:calibrator.cal CALIBRATION Calibrator urn:nasa:pds:context:target:calibrator.calibration CALIMG Calibrator urn:nasa:pds:context:target:calibrator.calimg CAL LAMPS Calibrator urn:nasa:pds:context:target:calibrator.cal_lamps CALLISTO Satellite urn:nasa:pds:context:target:satellite.callisto
    [Show full text]
  • Architecture for Going to the Outer Solar System
    ARGOSY ARGOSY: ARchitecture for Going to the Outer solar SYstem Ralph L. McNutt Jr. ll solar system objects are, in principle, targets for human in situ exploration. ARGOSY (ARchitecture for Going to the Outer solar SYstem) addresses anew the problem of human exploration to the outer planets. The ARGOSY architecture approach is scalable in size and power so that increasingly distant destinations—the systems of Jupiter, Saturn, Uranus, and Neptune—can be reached with the same crew size and time require- ments. To enable such missions, achievable technologies with appropriate margins must be used to construct a viable technical approach at the systems level. ARGOSY thus takes the step past Mars in addressing the most difficult part of the Vision for Space AExploration: To extend human presence across the solar system. INTRODUCTION The Vision for Space Exploration “The reasonable man adapts himself to the world: the unreason- 2. Extend human presence across the solar system, start- able one persists in trying to adapt the world to himself. Therefore ing with a return to the Moon by the year 2020, in 1 all progress depends on the unreasonable man.” preparation for human exploration of Mars and other G. B. Shaw destinations 3. Develop the innovative technologies, knowledge, On 14 January 2004, President Bush proposed a new and infrastructures to explore and support decisions four-point Vision for Space Exploration for NASA.2 about destinations for human exploration 1. Implement a sustained and affordable human and 4. Promote international and commercial participation robotic program to explore the solar system and in exploration to further U.S.
    [Show full text]