Verification of Chemical Warfare Agent Exposure in Human Samples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novichok Agent - Wikipedia
18-3-2018 Novichok agent - Wikipedia Novichok agent Novichok (Russian: Новичо́к, "newcomer") is a series of nerve agents the Soviet Union and Russia developed between 1971 and 1993.[a][2][3] Russian scientists who developed the agents claim they are the deadliest nerve agents ever made, with some variants possibly five to eight times more potent than VX,[4][5] and others up to ten times more potent than soman.[6] They were designed as part of a Soviet program codenamed "FOLIANT".[7][1] Five Novichok variants are believed to have been weaponised for military use.[8] The most versatile was A-232 (Novichok-5).[9] Novichok agents have never been used on the battlefield. Theresa May, Prime Minister of the United Kingdom, said that one such agent was used in the poisoning of Sergei and Yulia Skripal in England in March 2018.[10] Russia officially denies producing or researching Novichok agents.[11] In 2013, the Organisation for the Prohibition of Chemical Weapons Scientific Advisory Board reported that it had insufficient information to comment on the existence or properties of Novichok agents,[12] and in 2011 it noted there was no peer reviewed paper on Novichok agents in scientific literature.[13] Contents Design objectives Disclosure Development and test sites Description of Novichok agents Chemistry Effects Use Poisoning of Kivelidi Poisoning of Sergei and Yulia Skripal See also References Further reading External links Design objectives These agents were designed to achieve four objectives:[14][15] To be undetectable using standard 1970s and 1980s NATO chemical detection equipment; To defeat NATO chemical protective gear; To be safer to handle; To circumvent the Chemical Weapons Convention list of controlled precursors, classes of chemical and physical form. -
Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles. -
Warning: the Following Lecture Contains Graphic Images
What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl). -
Nerve Agent Hydrolysis Activity Designed Into a Human Drug Metabolism Enzyme
Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme Andrew C. Hemmert1, Tamara C. Otto2, Roberto A. Chica3¤, Monika Wierdl4, Jonathan S. Edwards1, Steven L. Lewis1, Carol C. Edwards4, Lyudmila Tsurkan4, C. Linn Cadieux2, Shane A. Kasten2, John R. Cashman5, Stephen L. Mayo3, Philip M. Potter4, Douglas M. Cerasoli2, Matthew R. Redinbo1* 1 Department of Biochemistry/Biophysics and Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 2 United States Army Medical Research Institute for Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America, 3 Department of Biology and Chemistry, California Institute of Technology, Pasadena, California, United States of America, 4 Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America, 5 Human BioMolecular Research Institute, San Diego, California, United States of America Abstract Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme’s native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. -
Chemical Warfare Agents
Manuscript for Kirk-Othmer Encyclopedia of Chemical Technology August 2019 CHEMICAL WARFARE AGENTS This is the pre-print manuscript of an article published in the Kirk-Othmer Encyclopedia of Chemical Technology: https://onlinelibrary.wiley.com/doi/book/10.1002/0471238961 The published version of the article is available at the Wiley website: https://onlinelibrary.wiley.com/doi/10.1002/0471238961.0308051308011818.a01.pub3 How to cite: Costanzi, S. (2020). Chemical Warfare Agents. In Kirk‐Othmer Encyclopedia of Chemical Technology, (Ed.). doi:10.1002/0471238961.0308051308011818.a01.pub3 Stefano Costanzi Department of Chemistry and Center for Behavioral Neuroscience American University, Washington, D.C. [email protected] Chemical weapons are weapons that exploit the toxicity of chemicals to bring about death or harm. The toxic chemicals on which chemical weapons are based are known as chemical warfare agents. The elimination of this entire category of weapons is the aim of the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction, also known as Chemical Weapons Convention or CWC, which was opened for signature in 1993 and entered into force in 1997. Administered and implemented by the Hague- based Organisation for the Prohibition of Chemical Weapons (OPCW), the CWC is an international treaty that enjoys almost universal embracement, having been ratified or acceded by 193 States Parties. Importantly, the CWC poses a complete and absolute ban on chemical weapons, mandating State Parties to renounce “(a) to develop, produce, otherwise acquire, stockpile or retain chemical weapons, or transfer, directly or indirectly, chemical weapons to anyone; (b) to use chemical weapons; (c) to engage in any military preparations to use chemical weapons; (d) to assist, encourage or induce, in any way, anyone to engage in any activity prohibited to a State Party” under the Convention (CWC Article II, Paragraph 1) (1-3). -
Efficacy of the Repon1 Mutant IIG1 to Prevent Cyclosarin Toxicity in Vivo and to Detoxify Structurally Different Nerve Agents in Vitro
Arch Toxicol (2014) 88:1257–1266 DOI 10.1007/s00204-014-1204-z MOLECULAR TOXICOLOGY Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro Franz Worek · Thomas Seeger · Moshe Goldsmith · Yacov Ashani · Haim Leader · Joel S. Sussman · Dan Tawfik · Horst Thiermann · Timo Wille Received: 30 September 2013 / Accepted: 16 January 2014 / Published online: 30 January 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract The potent human toxicity of organophos- alkylmethylfluorophosphonates but had low efficiency with phorus (OP) nerve agents calls for the development of the phosphoramidate tabun and was virtually ineffective effective antidotes. Standard treatment for nerve agent with the nerve agent VX. This quantitative analysis vali- poisoning with atropine and an oxime has a limited effi- dated the model for predicting in vivo protection by cata- cacy. An alternative approach is the development of cata- lytic bioscavengers based on their catalytic efficiency, the lytic bioscavengers using OP-hydrolyzing enzymes such level of circulating enzyme, and the dose of the intoxicat- as paraoxonases (PON1). Recently, a chimeric PON1 ing nerve agent. The in vitro and in vivo results indicate mutant, IIG1, was engineered toward the hydrolysis of the that IIG1 may be considered as a promising candidate toxic isomers of soman and cyclosarin with high in vitro bioscavenger to protect against the toxic effects of a range catalytic efficiency. In order to investigate the suitabil- of highly toxic nerve agents. ity of IIG1 as a catalytic bioscavenger, an in vivo guinea pig model was established to determine the protective Keywords Nerve agents · Paraoxonase · Mutant · effect of IIG1 against the highly toxic nerve agent cyclo- Detoxification · Protection · Bioscavenger sarin. -
Prüfung Der Wirksamkeit Chemischer Scavenger Als Therapeutika Bei Organophosphatvergiftungen
Aus dem Walther-Straub-Institut für Pharmakologie und Toxikologie der Ludwig-Maximilians-Universität München Vorstand Prof. Dr. med. Thomas Gudermann Prüfung der Wirksamkeit chemischer Scavenger als Therapeutika bei Organophosphatvergiftungen Examination of effectiveness of chemical scavengers as therapeutics in organophosphate poisoning Dissertation zum Erwerb des Doktorgrades der Humanbiologie der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von Anne Bierwisch aus Sondershausen 2017 Mit Genehmigung der Medizinischen Fakultät der Universität München Berichterstatter: Prof. Dr. med. Franz Worek Mitberichterstatter: Priv. Doz. Dr. Kai Kehe Mitberichterstatter: Priv. Doz. Dr. Anton Eberharter Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 24.01.2017 Abstract Cholinergic crisis triggered by inhibition of cholinesterases via organophosphorus nerve agents (OP) and pesticides is treated with atropine and a reactivator of inhib- ited cholinesterase, called oxime. Multiple in vitro and in vivo studies demonstrated that this standard therapy may secure survival, but is insufficient in preventing incapacitation and lacks efficacy against several nerve agents and pesticides. Over the years, novel therapy approaches have been closely investigated with promising candidates being non-oxime reactivators and scavengers based on enzymes (bioscav- engers) or small molecules. The low efficacy and immunological compatibility are main disadvantages of bioscavengers, thus the focus of the presented thesis is on a small molecule scavenger and a non-oxime reactivator. Detoxification of OP by cyclodextrins (CD), a macrocycle, was recognized early and optimized by inserting a nucleophilic group at the rim of the CD cavity. But the development of a more potent scavenger with a broad spectrum activity is closely linked to gathering information about inclusion complexes in cyclodextrins and their influencing factors. -
Cyclosarin (GF) Team (NRT) Quick Reference Guides (Qrgs) for Chemical Warfare Agents
NRT Quick Reference Guide: For references, please see Key References Cited/Used in National Response Cyclosarin (GF) Team (NRT) Quick Reference Guides (QRGs) for Chemical Warfare Agents. [January 2015 Update] QRGs are intended for Federal OSC/RPMs. Agent Classification: Schedule 1 Chemical Warfare Nerve Agent; CAS: 329-99-7; Formula: C7H14FO2P; Molecular Weight: 180.2 g/mol. Description: Colorless liquid, generally odorless. GF is a lethal cholinesterase inhibitor with a mechanism of toxicity similar to organophosphate insecticides, though it is much more potent. Environmental breakdown products of GF, including methylphosphonic acid (MPA), are relatively non-toxic. Other breakdown products include fluoride ion, which may exist as hydrofluoric acid (HF) depending on the pH. GF can react violently with strong oxidizers and may decompose when in contact with metals, evolving flammable hydrogen gas. GF is combustible but not easily ignited when heated; GF vapors can form explosive mixtures with air. Persistence: GF is considered a “moderately low persistent” chemical warfare agent. Vapor: minutes to hours; liquid: hours to days. Persistence will depend upon amount and purity of the agent, method of release, environmental conditions, and the types of surfaces and materials impacted. Porous, permeable, organic or polymeric materials such as carpets and vinyl tiles can accumulate agent by sorbing GF vapors and liquids, acting as “sinks,” thereby prolonging persistence. Physical properties are listed at/near STP unless otherwise indicated. Conversion Factors: ppm = mg/m3 x 0.1357; mg/m3 = ppm x 7.370 Vapor Vapor Volatility Boiling Point Freezing Flash Point Liquid Density Aqueous Solubility Non-aqueous Solubility Agent Characteristics Agent Density Pressure Point 6.2 (air = 1) 0.044 mm Hg 580 mg/m3 462°F/239°C -22°F/-30°C 201°F/94°C 1.13 g/mL Insoluble in H2O Common solvents, alcohols, (77°F/25°C) (77°F/25°C) (68°F/20°C) gasoline, oils, fats AIR RELEASE SCENARIOS ARE ASSUMED MOST PROBABLE; HOWEVER, OTHER RELEASE SCENARIOS AND EXPOSURE ROUTES SHOULD BE CONSIDERED. -
Cyclosarin Exposure Detection Via Microarray Data Analysis
CYCLOSARIN EXPOSURE DETECTION VIA MICROARRAY DATA ANALYSIS Andrzej K. Brodzik, John Dileo, Andrea Jensenius, Taehwan Kim, and Olivia Peters The MITRE Corporation, McLean VA 22102 ABSTRACT where xi is the ith sample normalized gene expression level, x¹ The purpose of this work is to establish feasibility of cyclosarin is the class mean, and s is the class standard deviation. Gene dis exposure detection via microarray data analysis and to evaluate the criminating power was evaluated by the Welch’s modified ttest sensitivity of several detection methods to exposure level. First, we ,s test the methods on the Golub leukemia data, and then we apply the 2 2 s1 s2 methods to multilevel cyclosarin exposure data. Initial results of t = (¹x1 ¡ x¹2) + ; (2) n1 n2 the investigation suggest that relatively low error rates in detection of a low dose sarin exposure can be obtained using either Bayes where n1 and n2 denote the number of samples, x¹1 and x ¹2 de classifier, neural networks, or simple class signature matching. note the means, and s1 and s2 denote the standard deviations of 1. INTRODUCTION groups 1 and 2, respectively. Subsequently, the Empirical Bayes While the effects of exposure to high level dose of chemical nerve approach [2] was used to estimate a posteriori probability of gene agents have been widely studied since World War I, so far there expression from the mixture model of affected and unaffected gene has been relatively little attention paid to the effects and detectibil probability densities. Genes which were determined not to be dif ity of the low level exposure [6]. -
Decontamination of High Toxicity Organophosphorus Compounds by Means of Photocatalytic Methods
MBNA Publishing House Constanta 2021 Proceedings of the International Scientific Conference SEA-CONF SEA-CONF PAPER • OPEN ACCESS Decontamination of High Toxicity Organophosphorus Compounds by Means of Photocatalytic Methods To cite this article: Octavian-Gabriel CHIRIAC, Oana-Elisabeta HOZA, Nicușor CHIRIPUCI, Adriana AGAPE, Andrei BURSUC and Edith-Hilde KAITER, Proceedings of the International Scientific Conference SEA-CONF 2021, pg.233-242. Available online at www.anmb.ro ISSN: 2457-144X; ISSN-L: 2457-144X doi: 10.21279/2457-144X-21-031 SEA-CONF© 2021. This work is licensed under the CC BY-NC-SA 4.0 License Decontamination of High Toxicity Organophosphorus Compounds by Means of Photocatalytic Methods Octavian-Gabriel CHIRIAC1*, Oana-Elisabeta HOZA2, Nicușor CHIRIPUCI1, Adriana AGAPE1, Andrei BURSUC1, Edith-Hilde KAITER3 1Diving Centre, Blvd.1 Mai, no. 19, 900123, Constanta, Romania 2Scientific Research Center for CBRN Defense and Ecology, 225 Rd. Oltenitei, 041309, Bucharest, Romania 3Naval Academy "Mircea cel Batran",St Fulgerului 1, 900218, Constanta Romania *Email: [email protected] Abstract: The hereby paper aims at investigating the photocatalytic behaviour of some titanium dioxide-based catalysts in the photocatalytic degradation reaction of organophosphorus compounds. Using conventional synthesis methods, new photocatalytic systems were prepared, which were tested in the mineralization of four simulants of organophosphorus chemical warfare agents. All these preparation methods aimed at modifying the photocatalytic properties of TiO2 in order to visible absorb, by doping TiO2, with transition metal ions. The exhaustive characterization of the photocatalytic behaviour of the synthesized materials led to a comparative study between the photocatalytic activity under conditions of irradiation in the visible range and that in the UV domain for the photodegradation of organophosphorus compounds. -
Instruction Manual for Coding Multiple Causes of Fetal Death, 2013
INSTRUCTIONS FOR THE AUTOMATED CLASSIFICATION OF THE INITIATING AND MULTIPLE CAUSES OF FETAL DEATHS, 2013 SECTION I: General Concepts For Coding Fetal Deaths A. INTRODUCTION This manual provides instructions to NCHS mortality medical coders and nosologists for coding multiple causes of fetal death reported on the 2003 Revision of the Fetal Death Reports filed in the states. These mortality coding instructions are used by the National Center for Health Statistics (NCHS), which is the Federal agency responsible for the compilation of U.S. statistics on causes of fetal death. NCHS is part of the Centers of Disease Control and Prevention. In coding causes of fetal death, NCHS refers to the World Health Organization’s most recent revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10) for processing the data for fetal mortality tabulation. Beginning with fetal deaths occurring in 1999, ICD-10 has been used for coding and classifying causes of fetal death. This revision of the Classification is published by the World Health Organization (WHO) and consists of three volumes. Volume 1 contains a list of three-character categories, the tabular list of inclusions, and the four-character sub-categories. The supplementary Z code Classification appears in Volume 1 but is not used for classifying mortality cause of death data, including fetal deaths. Optional fifth characters are provided for certain categories and an optional independent four-character coding system is provided to classify histological varieties of neoplasm, prefixed by the letter M (for morphology) and followed by a fifth character indicating behavior. These optional codes are not used at NCHS. -
Nerve Agent Tables
Report any release of WMD to the National Response Center 1-800-424-8802 NRT Quick Reference Guide: For References, Please See: Key References Cited/Used* in National Response Team Soman (GD) (NRT) Quick Reference Guides (QRGs) for Chemical Warfare Agents. Agent Classification: Chemical Warfare Nerve Agent CAS: 96-64-0 Description: Colorless liquid; generally odorless, possibly fruity. GD was manufactured as a warfare agent and is a lethal cholinesterase inhibitor. It has the same mechanism of toxicity as organophosphate insecticides but is much more potent. GD is considered to have low persistence; though it is less volatile than sarin (GB), it is much more vola- tile than persistent agents VX or sulfur mustard (HD). While considered relatively non-persistent, liquid GD could be present for hours to days if in large amounts, or in cold or enclosed environments. Breakdown/hydrolysis in water (especially treated water) is expected. Environmental breakdown products of GD are relatively nontoxic. Signs/symp- toms of exposure to GD will occur within minutes or hours, depending on the dose. Even relatively low dose exposure to GD can be fatal; administration of antidotes within 2 minutes of exposure may be effective. (See First Aid/Decon below) Persistence: vapor: minutes-hours; liquid: hours to days depending on amount, temperature, rain or other weather conditions, and type of surface. Molecular Weight: 182.18 g/mol Vapor Density: 6.33 (air = 1) Aqueous Solubility: 21 g/L 68°F Volatility: 3900 mg/m3 77°F Boiling Point: 388°F Soluble: organic solvents Agent Characteristics Freezing point: -44°F Flashpoint: 250°F Specific Gravity: 1.02 g/ml 68°F Vapor Pressure: 0.4 mm Hg @ 77°F Conversion Factors: 1ppm= 7.5 mg/m3; °C = 0.56 × (°F – 32) Air Release: Because it is somewhat volatile, GD is not generally considered a “persistent” agent.