Cyclosarin (GF) Team (NRT) Quick Reference Guides (Qrgs) for Chemical Warfare Agents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential Applicability of Assembled Chemical Weapons Assessment Technologies to RCRA Waste Streams and Contaminated Media EPA 542-R-00-004 August 2000
United States Solid Waste and EPA 542-R-00-004 Environmental Protection Emergency Response August 2000 Agency (5102G) www.epa.gov clu-in.org EPA Potential Applicability of Assembled Chemical Weapons Assessment Technologies to RCRA Waste Streams and Contaminated Media EPA 542-R-00-004 August 2000 POTENTIAL APPLICABILITY OF ASSEMBLED CHEMICAL WEAPONS ASSESSMENT TECHNOLOGIES TO RCRA WASTE STREAMS AND CONTAMINATED MEDIA U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 Potential Applicability of ACWA Technologies to RCRA Waste Streams and Contaminated Media NOTICE AND DISCLAIMER This document was prepared by the U.S. Environmental Protection Agency’s Technology Innovation Office with support under EPA Contract Number 68-W-99-003. It is intended to raise the awareness of the technologies included in the Assembled Chemical Weapons Assessment (ACWA) program, and presents an overview of each technology, including its applicability, performance, and other factors. Information about the technologies was obtained from the technology providers. No testing or evaluation was conducted by EPA during preparation of this document, and an independent assessment of this information was beyond EPA’s scope. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. For more information about this project, please contact: John Kingscott, U.S. Environmental Protection Agency, Technology Innovation Office, Ariel Rios Building, 1200 Pennsylvania Avenue, N.W. (MS 5102G), Washington, D.C., 20460; (703) 603-7189; e-mail: [email protected]. This document may be obtained from EPA’s web site at www.epa.gov/tio, or at clu-in.org. -
Verification of Chemical Warfare Agent Exposure in Human Samples
Toxichem Krimtech 2013;80(Special Issue):288 Verification of chemical warfare agent exposure in human samples Paul W. Elsinghorst, Horst Thiermann, Marianne Koller Institut für Pharmakologie und Toxikologie der Bundeswehr, München Abstract Aim: This brief presentation provides an overview of methods that have been developed for the verification of human exposure to chemical warfare agents. Methods: GC–MS detection of nerve agents (V- and G-type) has been carried out with respect to unreacted agents as well as enzyme-bound species and metabolites. Methods involving di- rect SPE from plasma, fluoride-induced release of protein-bound nerve agents in plasma and analysis of their metabolites in plasma and urine have been developed. Exposure to blistering agents, i.e., sulfur mustard, has been verified by GC–MS detection of the unreacted agent in plasma and by LC– and GC–MS analysis of its metabolites in urine. Results: After incorporation nerve agents quickly bind to proteins, e.g., acetylcholinesterase, butyrylcholinesterase or serum albumin, and only small parts remain freely circulating for a few hours (G-type) or up to 2 days (V-type). Concurrently they are converted to O-alkyl methylphosphonic acids by phosphotriesterases and/or simply by aqueous hydrolysis. As a re- sult, different biomarkers can be detected depending on the time passed between exposure and sampling. Unreacted V-type agents can be detected in plasma for 2 days, the O-alkyl methyl- phosphonic acids in plasma for about 2–4 days and in urine for up to 1 week. Fluoride-indu- ced release of protein-bound nerve agents can be carried out until 3 weeks post exposure. -
Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles. -
Warning: the Following Lecture Contains Graphic Images
What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl). -
Nerve Agent Hydrolysis Activity Designed Into a Human Drug Metabolism Enzyme
Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme Andrew C. Hemmert1, Tamara C. Otto2, Roberto A. Chica3¤, Monika Wierdl4, Jonathan S. Edwards1, Steven L. Lewis1, Carol C. Edwards4, Lyudmila Tsurkan4, C. Linn Cadieux2, Shane A. Kasten2, John R. Cashman5, Stephen L. Mayo3, Philip M. Potter4, Douglas M. Cerasoli2, Matthew R. Redinbo1* 1 Department of Biochemistry/Biophysics and Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 2 United States Army Medical Research Institute for Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America, 3 Department of Biology and Chemistry, California Institute of Technology, Pasadena, California, United States of America, 4 Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America, 5 Human BioMolecular Research Institute, San Diego, California, United States of America Abstract Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme’s native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. -
Soman Is a Human-Made Chemical Warfare Agent Classified As a Nerve Agent
District Health Department #2 Soman Fact Sheet RCP-AP-06l SOMAN WHAT YOU SHOULD KNOW What is Soman? Soman is a human-made chemical warfare agent classified as a nerve agent. Nerve agents are the most toxic and rapidly acting of known chemical warfare agents. Soman is a tasteless, odorless, clear liquid with a slight camphor odor (similar to vapor rub). How Can People Be Exposed to Soman? Following a release of Soman into the air, people can be exposed through skin contact, eye contact, or inhalation. Soman also mixes easily with water so it is possible that it could be used as a poison through the water. What Are The Symptoms of Soman? Individuals who are exposed to a low or moderate dose of soman by inhalation, ingestion, or skin absorption may experience some or all of the following symptoms within seconds to a few hours after exposure: runny nose, watery eyes, small pupils, eye pain, blurred vision, drooling and excessive sweating, cough, chest tightness, rapid breathing, diarrhea, increased urination, confusion, drowsiness, weakness, headache, nausea/vomiting, slow or fast heart rate, and abnormally high or low blood pressure. A large dose of Soman may lead to loss of consciousness, convulsions, paralysis, and respiratory failure leading to death. What are the Long-term Effects of Soman Exposure? Mild or moderately exposed people usually recover completely. Severely exposed people are not likely to survive. Can Soman Be Treated? Treatment consists of removing Soman as soon as possible and providing supportive medical care in a hospital setting. Antidotes are available for Soman. -
Efficacy of the Repon1 Mutant IIG1 to Prevent Cyclosarin Toxicity in Vivo and to Detoxify Structurally Different Nerve Agents in Vitro
Arch Toxicol (2014) 88:1257–1266 DOI 10.1007/s00204-014-1204-z MOLECULAR TOXICOLOGY Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro Franz Worek · Thomas Seeger · Moshe Goldsmith · Yacov Ashani · Haim Leader · Joel S. Sussman · Dan Tawfik · Horst Thiermann · Timo Wille Received: 30 September 2013 / Accepted: 16 January 2014 / Published online: 30 January 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract The potent human toxicity of organophos- alkylmethylfluorophosphonates but had low efficiency with phorus (OP) nerve agents calls for the development of the phosphoramidate tabun and was virtually ineffective effective antidotes. Standard treatment for nerve agent with the nerve agent VX. This quantitative analysis vali- poisoning with atropine and an oxime has a limited effi- dated the model for predicting in vivo protection by cata- cacy. An alternative approach is the development of cata- lytic bioscavengers based on their catalytic efficiency, the lytic bioscavengers using OP-hydrolyzing enzymes such level of circulating enzyme, and the dose of the intoxicat- as paraoxonases (PON1). Recently, a chimeric PON1 ing nerve agent. The in vitro and in vivo results indicate mutant, IIG1, was engineered toward the hydrolysis of the that IIG1 may be considered as a promising candidate toxic isomers of soman and cyclosarin with high in vitro bioscavenger to protect against the toxic effects of a range catalytic efficiency. In order to investigate the suitabil- of highly toxic nerve agents. ity of IIG1 as a catalytic bioscavenger, an in vivo guinea pig model was established to determine the protective Keywords Nerve agents · Paraoxonase · Mutant · effect of IIG1 against the highly toxic nerve agent cyclo- Detoxification · Protection · Bioscavenger sarin. -
Prüfung Der Wirksamkeit Chemischer Scavenger Als Therapeutika Bei Organophosphatvergiftungen
Aus dem Walther-Straub-Institut für Pharmakologie und Toxikologie der Ludwig-Maximilians-Universität München Vorstand Prof. Dr. med. Thomas Gudermann Prüfung der Wirksamkeit chemischer Scavenger als Therapeutika bei Organophosphatvergiftungen Examination of effectiveness of chemical scavengers as therapeutics in organophosphate poisoning Dissertation zum Erwerb des Doktorgrades der Humanbiologie der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von Anne Bierwisch aus Sondershausen 2017 Mit Genehmigung der Medizinischen Fakultät der Universität München Berichterstatter: Prof. Dr. med. Franz Worek Mitberichterstatter: Priv. Doz. Dr. Kai Kehe Mitberichterstatter: Priv. Doz. Dr. Anton Eberharter Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 24.01.2017 Abstract Cholinergic crisis triggered by inhibition of cholinesterases via organophosphorus nerve agents (OP) and pesticides is treated with atropine and a reactivator of inhib- ited cholinesterase, called oxime. Multiple in vitro and in vivo studies demonstrated that this standard therapy may secure survival, but is insufficient in preventing incapacitation and lacks efficacy against several nerve agents and pesticides. Over the years, novel therapy approaches have been closely investigated with promising candidates being non-oxime reactivators and scavengers based on enzymes (bioscav- engers) or small molecules. The low efficacy and immunological compatibility are main disadvantages of bioscavengers, thus the focus of the presented thesis is on a small molecule scavenger and a non-oxime reactivator. Detoxification of OP by cyclodextrins (CD), a macrocycle, was recognized early and optimized by inserting a nucleophilic group at the rim of the CD cavity. But the development of a more potent scavenger with a broad spectrum activity is closely linked to gathering information about inclusion complexes in cyclodextrins and their influencing factors. -
Converting Former Soviet Chemical Weapons Plants
Jonathan B. Tucker ince Russia possesses the world’s largest stockpile This essay lays out a brief history of the CWPF con- of chemical weapons (CW)—a declared total of version issue and the contending U.S. and Russian posi- S40,000 metric tons—Russian ratification and tions. It then suggests a compromise approach based on implementation of the 1993 Chemical Weapons Conven- industrial joint ventures that would enable Moscow to tion (CWC) will be critical to the success of the global convert its former CWPFs in an economic manner, while chemical disarmament and non- satisfying the concerns of proliferation regime. To date, the United States and other however, Moscow’s ratification VIEWPOINT: countries that conversion be has been delayed by political, irreversible and verifiable. economic, and environmental CONVERTING FORMER concerns associated with CW CW PRODUCTION destruction and the conversion SOVIET CHEMICAL ACTIVITIES of former Soviet chemical weapon production facilities WEAPONS PLANTS Before, during, and after (CWPFs) to legitimate com- World War II, the Soviet by Jonathan B. Tucker mercial activities.1 Union produced many tens of thousands of tons of chemi- Whereas American CWPFs cal weapons (both blister were all single-purpose military facilities that have lain and nerve agents) at multiple facilities, most of them in dormant for years, former Soviet CWPFs are integrated the Volga River basin.4 On April 10, 1987, President into large civilian chemical production complexes and Mikhail Gorbachev declared that the Soviet Union would share the same industrial infrastructure. For example, sev- henceforth cease all development and production of CW eral buildings that once produced nerve agents are em- agents. -
VX Binary (VX2) – Developed by the US • Novichok Agent
THE FOUR LIKELY BINARY AGENTS Working paper Charles P. Blair Last Updated, January 2013 Binary sarin (GB2) – developed by the U.S. Binary soman (GD2) VX binary (VX2) – developed by the U.S Novichok agent (“New Comer) –developed by the Soviets Additionally, Eric Croddy has written that VNSAs may use “binarytype designs” in an attack…with simple designs most likely using common chemical ingredients (e . g. , c ya n id e . ) ” 1 Aum is an example o f t h is . 1. Binary sarin . With binary sarin (also referred to as “GB binary” and “GB2”) a forward container has methylphosphonic difluoride (DF), while a second, rear container has an isopropyl alcohol and isopropylamine solution (OPA). The DF resides in the munition prior to use. The OPA is added just prior to launch. After deployment of the weapon, the two canisters rupture, “the isopropyl amine binds to the hydrogen fluoride generated during the chemical reaction, and the chemical mixture produces GB.”2 Experts note that, “The final product of the weapon is of the same chemical structure as the original nerve agent. The term binary refers only to the storage and deployment method used, not to the chemical structure of the substance.”3 With regard to how long it takes the DF and OPA to mix before binary sarin is extant, Eric Croddy notes that, “as in any chemical reaction, a certain amount of time is required for the [binary] reaction to run its course. In the case of GB binary, this required about seven seconds.”4 2. Binary soman (also referred to as “GD binary” and “GD2”). -
Nerve Agents (Ga, Gb, Gd, Vx) Tabun (Ga) Cas # 77-81-6 Sarin (Gb) Cas # 107-44-8 Soman (Gd) Cas # 96-64-0 Vx Cas # 50782-69-9
NERVE AGENTS (GA, GB, GD, VX) TABUN (GA) CAS # 77-81-6 SARIN (GB) CAS # 107-44-8 SOMAN (GD) CAS # 96-64-0 VX CAS # 50782-69-9 Division of Toxicology ToxFAQsTM April 2002 This fact sheet answers the most frequently asked health questions (FAQs) about nerve agents. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Exposure to nerve agents can occur due to accidental release from a military storage facility. Nerve agents are highly toxic regardless of the route of exposure. Exposure to nerve agents can cause tightness of the chest, excessive salivation, abdominal cramps, diarrhea, blurred vision, tremors, and death. Nerve agents (GA, GB, GD, VX) have been identified at 5 of the 1,585 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are nerve agents GA, GB, GD, and VX? ‘ GA, GB, GD, and VX will be broken down in water quickly, but small amounts may evaporate. Nerve agents GA(tabun), GB (sarin), GD(soman), and VX are ‘ GA, GB, GD, and VX will be broken down in moist soil manufactured compounds. The G-type agents are clear, quickly. Small amounts may evaporate into air or travel colorless, tasteless liquids miscible in water and most below the soil surface and contaminate groundwater. -
VX Gas Fact Sheet RCP-AP-06N
District Health Department #2 VX Gas Fact Sheet RCP-AP-06n VX GAS WHAT YOU SHOULD KNOW What is VX Gas? VX Gas is a human-made chemical warfare agent classified as a nerve agent. Nerve agents are the most toxic and rapidly acting of known chemical warfare agents. VX Gas is a tasteless, odorless, clear liquid with a slight camphor odor (similar to vapor rub). How Can People Be Exposed to VX Gas? Following a release of VX Gas into the air, people can be exposed through skin contact, eye contact, or inhalation. VX Gas also mixes easily with water so it is possible that it could be used as a poison through the water. What Are The Symptoms of VX Gas? Individuals who are exposed to a low or moderate dose of VX Gas by inhalation, ingestion, or skin absorption may experience some or all of the following symptoms within seconds to a few hours after exposure: runny nose, watery eyes, small pupils, eye pain, blurred vision, drooling and excessive sweating, cough, chest tightness, rapid breathing, diarrhea, increased urination, confusion, drowsiness, weakness, headache, nausea/vomiting, slow or fast heart rate, and abnormally high or low blood pressure. A large dose of VX Gas may lead to loss of consciousness, convulsions, paralysis, and respiratory failure leading to death. What are the Long-term Effects of VX Gas Exposure? Mild or moderately exposed people usually recover completely. Severely exposed people are not likely to survive. Can VX Gas Be Treated? Treatment consists of removing VX Gas as soon as possible and providing supportive medical care in a hospital setting.