Wits Planetarium July 2020

Total Page:16

File Type:pdf, Size:1020Kb

Wits Planetarium July 2020 Wits Planetarium July 2020 [email protected] ______________________________________________________________________________ In this newsletter: • Shows • Moon Phases • Sunrise/set and moonrise/set for Johannesburg • Astronomical Events • Eclipse • Naked Eye Planets • Southern Delta Aquariids Meteor Shower • Word Search – Moons of Jupiter Shows Currently, ALL SHOWS are SUSPENDED until further notice due to the Covid-19 pandemic and national state of disaster. Moon Phases Full Moon: 5 Jul Last Quarter: 13 Jul New Moon: 20 Jul First Quarter: 27 Jul Sunrise/set and Moonrise/set for Johannesburg – July 2020 Date Day Sunrise Sunset Moonrise Moonset h m h m h m h m 1 Wed 06:56 17:28 14:21 02:52 2 Thu 06:56 17:28 15:06 03:56 3 Fri 06:56 17:28 15:56 05:01 4 Sat 06:56 17:29 16:51 06:04 5 Sun 06:56 17:29 17:49 07:04 6 Mon 06:56 17:30 18:49 07:58 7 Tue 06:56 17:30 19:47 08:46 8 Wed 06:56 17:30 20:44 09:29 9 Thu 06:56 17:31 21:39 10:06 10 Fri 06:55 17:31 22:31 10:40 11 Sat 06:55 17:32 23:22 11:12 12 Sun 06:55 17:32 --:-- 11:43 13 Mon 06:55 17:33 00:13 12:14 14 Tue 06:55 17:33 01:04 12:45 15 Wed 06:54 17:34 01:56 13:20 16 Thu 06:54 17:34 02:50 13:58 Page 1 of 6 Date Day Sunrise Sunset Moonrise Moonset h m h m h m h m 17 Fri 06:54 17:35 03:46 14:40 18 Sat 06:53 17:35 04:43 15:29 19 Sun 06:53 17:35 05:41 16:23 20 Mon 06:53 17:36 06:37 17:22 21 Tue 06:52 17:36 07:30 18:25 22 Wed 06:52 17:37 08:19 19:30 23 Thu 06:52 17:37 09:04 20:34 24 Fri 06:51 17:38 09:45 21:37 25 Sat 06:51 17:38 10:23 22:40 26 Sun 06:50 17:39 11:01 23:42 27 Mon 06:50 17:39 11:39 --:-- 28 Tue 06:49 17:40 12:20 00:45 29 Wed 06:49 17:40 13:03 01:48 30 Thu 06:48 17:41 13:50 02:51 31 Fri 06:47 17:41 14:42 03:54 Data calculated using MICA, US Naval Observatory Astronomical Events – July 2020 Date Day Time Event 1 Wed 04:45 Mercury Inferior Conj. Venus: 34.3° W 4 Sat 05:18 Moon Descending Node 16:59 Aphelion: 1.0167 AU (Earth farthest from Sun 152,096,155 km) 5 Sun 03:37 Moon South Dec.: 24.1° S 06:30 Penumbral Lunar Eclipse 06:44 Full Moon 23:37 Moon close to Jupiter: 1.9° N 6 Mon 10:45 Moon close to Saturn: 2.6° N 11 Sat 14:17 Venus close to Aldebaran: 1° N 21:36 Moon close to Mars: 2.2° N 12 Sun 21:27 Moon Apogee: 404,200 km 13 Mon 01:29 Last Quarter 14 Tue 09:03 Jupiter Opposition 17 Fri 09:26 Moon close to Venus: 3.4° S 18 Sat 14:33 Moon Ascending Node 19 Sun 13:51 Moon North Dec.: 24.1° N 20 Mon 19:33 New Moon 23:33 Saturn Opposition 22 Wed 16:59 Mercury Elongation: 20.1° W 25 Sat 06:54 Moon Perigee: 368,400 km 27 Mon 14:32 First Quarter 23:08 Delta Aquarid Shower: ZHR = 20 31 Fri 11:32 Moon Descending Node Sky Events Calendar by Fred Espenak and Sumit Dutta (NASA's GSFC) Page 2 of 6 Eclipse 5 July Type of Eclipse: Penumbral Lunar Eclipse Time (SAST): 5:07 a.m. - 7:52 a.m. Visible from: Americas, southwestern Europe and Africa Naked Eye Planets Mercury: Mercury reaches inferior conjunction (between the sun and earth) on 1 st July before moving to the eastern morning sky. Venus: Venus is above the eastern morning horizon in the constellation of Taurus the bull. It will be within 1° of the star Aldebaran on 11 July (see image below). Page 3 of 6 Mars: In the beginning of July Mars rises at 11:33 p.m. and by months end at 10:45 p.m. If you have a suitable sized telescope you will notice the southern pole cap shrink in the following weeks. Jupiter: Reach opposition on 14 July, it will be visible all night. Even a small telescope will show its main two cloud bands. Saturn: Saturn rises about 30 minutes after Jupiter. It will reach opposition on 20 July when it will become an all-night object. Moon 4 – 6 July at 10 p.m. Venus 11 July at 5 a.m. Image: Stellarium Image: Stellarium Page 4 of 6 Southern Delta Aquariids Active from: 21 July – 29 August Maximum: 29 July Constellation: Aquarius - the water carrier Aquarius as depicted by Johann Bayer in his Uranometria (1603). Source image provided by www.RareMaps.com — Barry Lawrence Ruderman Antique Maps Inc. The Delta Aquariids is best viewed from areas away from the city lights. The best time is between 10 p.m. and 5 a.m. The shower originated from the breakup of what are now the Marsden and Kracht Sungrazing comets. We might see between 20 – 25 meteors per hour. Radiant of Delta Aquariids as on 29 July 2020 at 10 p.m. Image: Stellarium Page 5 of 6 Word Search Search up, down, forward, backward, and on the diagonal to find the hidden words. Moons of Jupiter P A D C R T J D A N U Y L L G D V C S N Z A Y X A N B E S A H B N A S O P F A D X V D F G L P D B N K A L Y K E E H R A V B E U R Y D O M E H A L L O K Q R M C V G G H L D R F U O W M E T I S X B Y X A G W O R L D T E P L A N E T A R I U M C H L R P Z T Z E S D F L U M U J V A D E L C F H A O E D E H H B M M E L A R A O Q R H J N T E J D A N U J X C E D H M E R R D G M N T I S R E V I N U S T I W D B G H C T N W Q E G M E A T E O F E E B M X Z O G E V B I T D M A I O X E W O O T Y P U K S R F G W D H T E H K B Y R Q T B K L P S F H W R O O M S E H M E M B B M G J S K H C M D I N Y D V O V Q K I Z A U K L X E J A M A T W F C L A S I V B P I A S D V P G L K F R S R B E A G I L E I C D J K A L O S V O N H H D L P A R C I V T A A C W T S T A E H S S R B D A I A P I T F T W R C X X A H Q P B A T B V I G F H L L N D X D N U F N Q V S E W K J M R H Z E X N Y Y O S F Y V E S T N A L P M K A K B O G D H R K E Y D P A S I T H E E Y F B I Y N A D K J Q M E C F K G S E D E M Y N A G D Q S E E A X A D T N F A D B M O B L U E M O O N D N T R T Z C L R K A L L I C H O R E A S A T U R N R O C S A L G N D G J C Y L L E N E E G U K M Q R Y J X R C Y J N D G X D E F A S E M O N I R E Y A T S P E R T Z W T N I D B T I M K Y A V T Y W U C H O A R U B ADRASTEA CYLLENE EURYDOME KALE MNEME AITNE ELARA GANYMEDE KALLICHORE ORTHOSIE AOEDE ERINOME HARPALYKE KALYKE PASITHEE CALLISTO EUPORIE HEGEMONE LEDA THEBE CARPO EUROPA IO METIS THEMISTO Enjoy Clear skies Constant Page 6 of 6 .
Recommended publications
  • Models of a Protoplanetary Disk Forming In-Situ the Galilean And
    Models of a protoplanetary disk forming in-situ the Galilean and smaller nearby satellites before Jupiter is formed Dimitris M. Christodoulou1, 2 and Demosthenes Kazanas3 1 Lowell Center for Space Science and Technology, University of Massachusetts Lowell, Lowell, MA, 01854, USA. 2 Dept. of Mathematical Sciences, Univ. of Massachusetts Lowell, Lowell, MA, 01854, USA. E-mail: [email protected] 3 NASA/GSFC, Laboratory for High-Energy Astrophysics, Code 663, Greenbelt, MD 20771, USA. E-mail: [email protected] March 5, 2019 ABSTRACT We fit an isothermal oscillatory density model of Jupiter’s protoplanetary disk to the present-day Galilean and other nearby satellites and we determine the radial scale length of the disk, the equation of state and the central density of the primordial gas, and the rotational state of the Jovian nebula. Although the radial density profile of Jupiter’s disk was similar to that of the solar nebula, its rotational support against self-gravity was very low, a property that also guaranteed its long-term stability against self-gravity induced instabilities for millions of years. Keywords. planets and satellites: dynamical evolution and stability—planets and satellites: formation—protoplanetary disks 1. Introduction 2. Intrinsic and Oscillatory Solutions of the Isothermal Lane-Emden Equation with Rotation In previous work (Christodoulou & Kazanas 2019a,b), we pre- sented and discussed an isothermal model of the solar nebula 2.1. Intrinsic Analytical Solutions capable of forming protoplanets long before the Sun was actu- The isothermal Lane-Emden equation (Lane 1869; Emden 1907) ally formed, very much as currently observed in high-resolution with rotation (Christodoulou & Kazanas 2019a) takes the form (∼1-5 AU) observations of protostellar disks by the ALMA tele- of a second-order nonlinear inhomogeneous equation, viz.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • The Moons of Jupiter – Orbital Synchrony 3
    The Moons of Jupiter – Orbital Synchrony 3 The figure above shows the orbits of many of Jupiter's numerous satellites. Each of these ‘moons’ orbits Jupiter in a different number of days. The image to the right shows the appearance of one of Jupiter’s moons Callisto. The orbit periods of many of the moons have simple relationships between them. When Jupiter’s moon Ganymede orbits 1/2 way around Jupiter, Jupiter's moon Europa orbits Jupiter once. When Jupiter’s moon Leda orbits Jupiter once, Ganymede orbits Jupiter 34 times. When Jupiter's moon Leda orbits Jupiter five times, the more distant moon Thelxinoe orbits Jupiter twice. When Leda orbits Jupiter three times, the moon Kalyke orbits Jupiter once. Example: 1/2 x Ganymede = 1 x Europa, so in the time it takes Europa to go once around Jupiter, Ganymede goes only ½ way around in its orbit. Problem 1 - How many times does Ganymede orbit Jupiter in the time it takes Europa to orbit six times? Problem 2 – How many times does Leda orbit Jupiter in the time it takes Ganymede to orbit Jupiter 6 times? Problem 3 - How many orbits will Thelxinoe have to complete around Jupiter before Kalyke orbits exactly five times? Space Math http://spacemath.gsfc.nasa.gov Answer Key 3 Problem 1 - How many times does Ganymede orbit Jupiter in the time it takes Europa to orbit six times? Answer: The information says that Europa orbits once when Ganymede orbits 1/2 times, so 1 x Europa = 1/2 x Ganymede and so 2 x Europa = 1 x Ganymede.
    [Show full text]
  • Astrometric Positions for 18 Irregular Satellites of Giant Planets from 23
    Astronomy & Astrophysics manuscript no. Irregulares c ESO 2018 October 20, 2018 Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations,⋆,⋆⋆,⋆⋆⋆,⋆⋆⋆⋆ A. R. Gomes-Júnior1, M. Assafin1,†, R. Vieira-Martins1, 2, 3,‡, J.-E. Arlot4, J. I. B. Camargo2, 3, F. Braga-Ribas2, 5,D.N. da Silva Neto6, A. H. Andrei1, 2,§, A. Dias-Oliveira2, B. E. Morgado1, G. Benedetti-Rossi2, Y. Duchemin4, 7, J. Desmars4, V. Lainey4, W. Thuillot4 1 Observatório do Valongo/UFRJ, Ladeira Pedro Antônio 43, CEP 20.080-090 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 2 Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 3 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil 4 Institut de mécanique céleste et de calcul des éphémérides - Observatoire de Paris, UMR 8028 du CNRS, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 5 Federal University of Technology - Paraná (UTFPR / DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil 6 Centro Universitário Estadual da Zona Oeste, Av. Manual Caldeira de Alvarenga 1203, CEP 23.070-200 Rio de Janeiro RJ, Brazil 7 ESIGELEC-IRSEEM, Technopôle du Madrillet, Avenue Galilée, 76801 Saint-Etienne du Rouvray, France Received: Abr 08, 2015; accepted: May 06, 2015 ABSTRACT Context. The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured.
    [Show full text]
  • Exep Science Plan Appendix (SPA) (This Document)
    ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1.
    [Show full text]
  • CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
    CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6)
    [Show full text]
  • The Jovian System: a Scale Model Middle Grades
    The Jovian System: A Scale Model Middle grades Lesson Summary Teaching Time: One 45-minute period This exercise will give students an idea of the size and scale of the Jovian system, and also illustrate Materials the Galileo spacecraft's arrival day trajectory. To share with the whole class: • Materials for scale-model moons (optional, may Prior Knowledge & Skills include play-dough or cardboard) Characteristics of the Jupiter system • • Rope marked with distance units • Discovery of Jupiter’s Galilean satellites • Copy of arrival day geometry figure • The Galileo probe mission AAAS Science Benchmarks Advanced Planning Preparation Time: 30 minutes The Physical Setting 1. Decide whether to use inanimate objects or The Universe students to represent the moons Common Themes 2. If using objects, gather materials Scale 3. Mark off units on rope 4. Review lesson plan NSES Science Standards • Earth and space science: Earth in the Solar System • Science and technology: Understandings about science and technology NCTM Mathematics Standards • Number and Operations: Compute fluently and make reasonable estimates Source: Project Galileo, NASA/JPL The Jovian System: A Scale Model Objectives: This exercise will give students an idea of the size and scale of the Jovian system, and also illustrate the Galileo spacecraft's arrival day trajectory. 1) Set the Stage Before starting your students on this activity, give them at least some background on Jupiter and the Galileo mission: • Jupiter's mass is more than twice that of all the other planets, moons, comets, asteroids and dust in the solar system combined. • Jupiter is looked on as a "mini solar system" because it resembles the solar system in miniature-for example, it has many moons (resembling the Sun's array of planets), and it has a huge magnetosphere, or volume of space where Jupiter's magnetic field pushes away that of the Sun.
    [Show full text]
  • 02. Solar System (2001) 9/4/01 12:28 PM Page 2
    01. Solar System Cover 9/4/01 12:18 PM Page 1 National Aeronautics and Educational Product Space Administration Educators Grades K–12 LS-2001-08-002-HQ Solar System Lithograph Set for Space Science This set contains the following lithographs: • Our Solar System • Moon • Saturn • Our Star—The Sun • Mars • Uranus • Mercury • Asteroids • Neptune • Venus • Jupiter • Pluto and Charon • Earth • Moons of Jupiter • Comets 01. Solar System Cover 9/4/01 12:18 PM Page 2 NASA’s Central Operation of Resources for Educators Regional Educator Resource Centers offer more educators access (CORE) was established for the national and international distribution of to NASA educational materials. NASA has formed partnerships with universities, NASA-produced educational materials in audiovisual format. Educators can museums, and other educational institutions to serve as regional ERCs in many obtain a catalog and an order form by one of the following methods: States. A complete list of regional ERCs is available through CORE, or electroni- cally via NASA Spacelink at http://spacelink.nasa.gov/ercn NASA CORE Lorain County Joint Vocational School NASA’s Education Home Page serves as a cyber-gateway to informa- 15181 Route 58 South tion regarding educational programs and services offered by NASA for the Oberlin, OH 44074-9799 American education community. This high-level directory of information provides Toll-free Ordering Line: 1-866-776-CORE specific details and points of contact for all of NASA’s educational efforts, Field Toll-free FAX Line: 1-866-775-1460 Center offices, and points of presence within each State. Visit this resource at the E-mail: [email protected] following address: http://education.nasa.gov Home Page: http://core.nasa.gov NASA Spacelink is one of NASA’s electronic resources specifically devel- Educator Resource Center Network (ERCN) oped for the educational community.
    [Show full text]
  • Liminal Leda: a Conversation About Art, Poetry, and Vague Translations of Sex Molly Pistrang [email protected]
    Connecticut College Digital Commons @ Connecticut College English Honors Papers English Department 2013 Liminal Leda: A Conversation about Art, Poetry, and Vague Translations of Sex Molly Pistrang [email protected] Follow this and additional works at: http://digitalcommons.conncoll.edu/enghp Part of the Classical Literature and Philology Commons, History of Art, Architecture, and Archaeology Commons, and the Literature in English, British Isles Commons Recommended Citation Pistrang, Molly, "Liminal Leda: A Conversation about Art, Poetry, and Vague Translations of Sex" (2013). English Honors Papers. 12. http://digitalcommons.conncoll.edu/enghp/12 This Honors Paper is brought to you for free and open access by the English Department at Digital Commons @ Connecticut College. It has been accepted for inclusion in English Honors Papers by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Liminal Leda: A Conversation about Art, Poetry, and Vague Translations of Sex An Honors Thesis Presented by Molly Alyssa Pistrang to The Department of Literatures in English in partial fulfillment of the requirements for Honors in the Major Field Connecticut College New London, Connecticut May 2013 Dedication To Leda, whoever you are Acknowledgments First, I want to thank Professor John Gordon, an incredible professor and man. Through him, my eyes have been opened to language in a way I never knew possible. As my thesis advisor, he directed me and also motivated me to push myself. I cannot overestimate his influence on my education and am forever grateful for the honor of working with him.
    [Show full text]
  • Jupiter's Ring-Moon System
    11 Jupiter’s Ring-Moon System Joseph A. Burns Cornell University Damon P. Simonelli Jet Propulsion Laboratory Mark R. Showalter Stanford University Douglas P. Hamilton University of Maryland Carolyn C. Porco Southwest Research Institute Larry W. Esposito University of Colorado Henry Throop Southwest Research Institute 11.1 INTRODUCTION skirts within the outer stretches of the main ring, while Metis is located 1000 km closer to Jupiter in a region where the ∼ Ever since Saturn’s rings were sighted in Galileo Galilei’s ring is depleted. Each of the vertically thick gossamer rings early sky searches, they have been emblematic of the ex- is associated with a moon having a somewhat inclined orbit; otic worlds beyond Earth. Now, following discoveries made the innermost gossamer ring extends towards Jupiter from during a seven-year span a quarter-century ago (Elliot and Amalthea, and exterior gossamer ring is connected similarly Kerr 1985), the other giant planets are also recognized to be with Thebe. circumscribed by rings. Small moons are always found in the vicinity of plane- Jupiter’s diaphanous ring system was unequivocally de- tary rings. Cuzzi et al. 1984 refer to them as “ring-moons,” tected in long-exposure images obtained by Voyager 1 (Owen while Burns 1986 calls them “collisional shards.” They may et al. 1979) after charged-particle absorptions measured by act as both sources and sinks for small ring particles (Burns Pioneer 11 five years earlier (Fillius et al. 1975, Acu˜na and et al. 1984, Burns et al. 2001). Ness 1976) had hinted at its presence. The Voyager flybys also discovered three small, irregularly shaped satellites— By definition, tenuous rings are very faint, implying Metis, Adrastea and Thebe in increasing distance from that particles are so widely separated that mutual collisions Jupiter—in the same region; they joined the similar, but play little role in the evolution of such systems.
    [Show full text]
  • Perfect Little Planet Educator's Guide
    Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet.
    [Show full text]
  • 385557Main Jupiter Facts1(2).Pdf
    Jupiter Ratio (Jupiter/Earth) Io Europa Ganymede Callisto Metis Mass 1.90 x 1027 kg 318 15 3 Adrastea Amalthea Thebe Themisto Leda Volume 1.43 x 10 km 1320 National Aeronautics and Space Administration Equatorial Radius 71,492 km 11.2 Himalia Lysithea63 ElaraMoons S/2000 and Counting! Carpo Gravity 24.8 m/s2 2.53 Jupiter Euporie Orthosie Euanthe Thyone Mneme Mean Density 1330 kg/m3 0.240 Harpalyke Hermippe Praxidike Thelxinoe Distance from Sun 7.79 x 108 km 5.20 Largest, Orbit Period 4333 days 11.9 Helike Iocaste Ananke Eurydome Arche Orbit Velocity 13.1 km/sec 0.439 Autonoe Pasithee Chaldene Kale Isonoe Orbit Eccentricity 0.049 2.93 Fastest,Aitne Erinome Taygete Carme Sponde Orbit Inclination 1.3 degrees Kalyke Pasiphae Eukelade Megaclite Length of Day 9.93 hours 0.414 Strongest Axial Tilt 3.13 degrees 0.133 Sinope Hegemone Aoede Kallichore Callirrhoe Cyllene Kore S/2003 J2 • Composition: Almost 90% hydrogen, 10% helium, small amounts S/2003of ammonia, J3methane, S/2003 ethane andJ4 water S/2003 J5 • Jupiter is the largest planet in the solar system, in fact all the otherS/2003 planets J9combined S/2003 are not J10 as large S/2003 as Jupiter J12 S/2003 J15 S/2003 J16 S/2003 J17 • Jupiter spins faster than any other planet, taking less thanS/2003 10 hours J18 to rotate S/2003 once, which J19 causes S/2003 the planet J23 to be flattened by 6.5% relative to a perfect sphere • Jupiter has the strongest planetary magnetic field in the solar system, if we could see it from Earth it would be the biggest object in the sky • The Great Red Spot,
    [Show full text]