The Jovian System: a Scale Model Middle Grades
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT
N T Z 33854 C *?** IS81 1? JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I '>•*,' T COLLEGE OF ENGINEERING Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I Prepared Under Contract No. NGR 33-010-071 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by NASA-Cornell Doctoral Design Trainee Group (196T-TO) October 1971 College of Engineering Cornell University Ithaca, New York Table of Contents Volume I Preface Chapter I: The Planet Jupiter: A Brief Summary B 1-2 r. Mechanical Properties of the Planet Jupiter. P . T-fi r> 1-10 F T-lfi F T-lfi 0 1-29 H, 1-32 T 1-39 References ... p. I-k2 Chapter II: The Spacecraft Design and Mission Definition A. Introduction p. II-l B. Organizational Structure and the JOSE Mission p. II-l C. JOSE Components p. II-1* D. Proposed Configuration p. II-5 Bibliography and References p. 11-10 Chapter III: Mission Trajectories A. Interplanetary Trajectory Analysis .... p. III-l B. Jupiter Orbital Considerations p. III-6 Bibliography and References. p. 111-38 Chapter IV: Attitude Control A. Introduction and Summary . p. IV-1 B. Expected Disturbance Moments M in Interplanetary Space . p. IV-3 C. Radiation-Produced Impulse Results p. IV-12 D. Meteoroid-Produced Impulse Results p. IV-13 E. Inertia Wheel Analysis p. IV-15 F. Attitude System Tradeoff Analysis p. IV-19 G. Conclusion P. IV-21 References and Bibliography p. TV-26 Chapter V: Propulsion Subsystem A. Mission Requirements p. V-l B. Orbit Insertion Analysis p. -
Models of a Protoplanetary Disk Forming In-Situ the Galilean And
Models of a protoplanetary disk forming in-situ the Galilean and smaller nearby satellites before Jupiter is formed Dimitris M. Christodoulou1, 2 and Demosthenes Kazanas3 1 Lowell Center for Space Science and Technology, University of Massachusetts Lowell, Lowell, MA, 01854, USA. 2 Dept. of Mathematical Sciences, Univ. of Massachusetts Lowell, Lowell, MA, 01854, USA. E-mail: [email protected] 3 NASA/GSFC, Laboratory for High-Energy Astrophysics, Code 663, Greenbelt, MD 20771, USA. E-mail: [email protected] March 5, 2019 ABSTRACT We fit an isothermal oscillatory density model of Jupiter’s protoplanetary disk to the present-day Galilean and other nearby satellites and we determine the radial scale length of the disk, the equation of state and the central density of the primordial gas, and the rotational state of the Jovian nebula. Although the radial density profile of Jupiter’s disk was similar to that of the solar nebula, its rotational support against self-gravity was very low, a property that also guaranteed its long-term stability against self-gravity induced instabilities for millions of years. Keywords. planets and satellites: dynamical evolution and stability—planets and satellites: formation—protoplanetary disks 1. Introduction 2. Intrinsic and Oscillatory Solutions of the Isothermal Lane-Emden Equation with Rotation In previous work (Christodoulou & Kazanas 2019a,b), we pre- sented and discussed an isothermal model of the solar nebula 2.1. Intrinsic Analytical Solutions capable of forming protoplanets long before the Sun was actu- The isothermal Lane-Emden equation (Lane 1869; Emden 1907) ally formed, very much as currently observed in high-resolution with rotation (Christodoulou & Kazanas 2019a) takes the form (∼1-5 AU) observations of protostellar disks by the ALMA tele- of a second-order nonlinear inhomogeneous equation, viz. -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
Exep Science Plan Appendix (SPA) (This Document)
ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1. -
Adaptive Multibody Gravity Assist Tours Design in Jovian System for the Ganymede Landing
TO THE ADAPTIVE MULTIBODY GRAVITY ASSIST TOURS DESIGN IN JOVIAN SYSTEM FOR THE GANYMEDE LANDING Grushevskii A.V.(1), Golubev Yu.F.(2), Koryanov V.V.(3), and Tuchin A.G.(4) (1)KIAM (Keldysh Institute of Applied Mathematics), Miusskaya sq., 4, Moscow, 125047, Russia, +7 495 333 8067, E-mail: [email protected] (2)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (3)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (4)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] Keywords: gravity assist, adaptive mission design, trajectory design, TID, phase beam Introduction Modern space missions inside Jovian system are not possible without multiple gravity assists (as well as in Saturnian system, etc.). The orbit design for real upcoming very complicated missions by NASA, ESA, RSA should be adaptive to mission parameters, such as: the time of Jovian system arrival, incomplete information about ephemeris of Galilean Moons and their gravitational fields, errors of flybys implementation, instrumentation deflections. Limited dynamic capabilities, taking place in case of maneuvering around Jupiter's moons, demand multiple encounters (about 15-30 times) for these purposes. Flexible algorithm of current mission scenarios synthesis (specially selected) and their operative transformation is required. Mission design is complicated due to requirements of the Ganymede Orbit Insertion (GOI) ("JUICE" ESA) and also Ganymede Landing implementation ("Laplas-P" RSA [1]) comparing to the ordinary early ―velocity gain" missions since ―Pioneers‖ and "Voyagers‖. Thus such scenario splits in two parts. Part 1(P1), as usually, would be used to reduce the spacecraft’s orbital energy with respect to Jupiter and set up the conditions for more frequent flybys. -
Our Planetary System (Chapter 7) Based on Chapter 7
Our Planetary System (Chapter 7) Based on Chapter 7 • This material will be useful for understanding Chapters 8, 9, 10, 11, and 12 on “Formation of the solar system”, “Planetary geology”, “Planetary atmospheres”, “Jovian planet systems”, and “Remnants of ice and rock” • Chapters 3 and 6 on “The orbits of the planets” and “Telescopes” will be useful for understanding this chapter Goals for Learning • How do planets rotate on their axes and orbit the Sun? • What are the planets made of? • What other classes of objects are there in the solar system? Orbits mostly lie in the same flat plane All planets go around the Sun in the same direction Most orbits are close to circular Not coincidences! Most planets rotate in the same “sense” as they orbit the Sun Coincidence? Planetary equators mostly lie in the same plane as their orbits Coincidence? • Interactive Figure: Orbital and Rotational Properties of the Planets Rotation and Orbits of Moons • Most moons (especially the larger ones) orbit in near-circular orbits in the same plane as the equator of their parent planet • Most moons rotate so that their equator is in the plane of their orbit • Most moons rotate in the same “sense” as their orbit around the parent planet • Everything is rotating/orbiting in the same direction A Brief Tour • Distance from Sun •Size •Mass • Composition • Temperature • Rings/Moons Sun 695000 km = 108 RE 333000 MEarth 98% Hydrogen and helium 99.9% total mass of solar system Surface = 5800K Much hotter inside Giant ball of gas Gravity => orbits Heat/light => weather -
Jupiter Mass
CESAR Science Case Jupiter Mass Calculating a planet’s mass from the motion of its moons Student’s Guide Mass of Jupiter 2 CESAR Science Case Table of Contents The Mass of Jupiter ........................................................................... ¡Error! Marcador no definido. Kepler’s Three Laws ...................................................................................................................................... 4 Activity 1: Properties of the Galilean Moons ................................................................................................. 6 Activity 2: Calculate the period of your favourite moon ................................................................................. 9 Activity 3: Calculate the orbital radius of your favourite moon .................................................................... 12 Activity 4: Calculate the Mass of Jupiter ..................................................................................................... 15 Additional Activity: Predict a Transit ............................................................................................................ 16 To know more… .......................................................................................................................... 19 Links ............................................................................................................................................ 19 Mass of Jupiter 3 CESAR Science Case Background Kepler’s Three Laws The three Kepler’s Laws, published between -
The Effect of Jupiter\'S Mass Growth on Satellite Capture
A&A 414, 727–734 (2004) Astronomy DOI: 10.1051/0004-6361:20031645 & c ESO 2004 Astrophysics The effect of Jupiter’s mass growth on satellite capture Retrograde case E. Vieira Neto1;?,O.C.Winter1, and T. Yokoyama2 1 Grupo de Dinˆamica Orbital & Planetologia, UNESP, CP 205 CEP 12.516-410 Guaratinguet´a, SP, Brazil e-mail: [email protected] 2 Universidade Estadual Paulista, IGCE, DEMAC, CP 178 CEP 13.500-970 Rio Claro, SP, Brazil e-mail: [email protected] Received 13 June 2003 / Accepted 12 September 2003 Abstract. Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L1 indicates that mass accretion provides an increase of the confinement region (delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M . We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R a 400 R and 0 e 0:5. The results give Jupiter’s mass at the X moment when the particle escapes from the planet. -
PHYS133 – Lab 4 the Revolution of the Moons of Jupiter
PHYS133 – Lab 4 The Revolution of the Moons of Jupiter Goals: Use a simulated remotely controlled telescope to observe Jupiter and the position of its four largest moons. Plot their positions relative to the planet vs. time and fit a curve to them to determine their orbit characteristics (i.e., period and semi‐major axis). Employ Newton’s form of Kepler’s third law to determine the mass of Jupiter. What You Turn In: Graphs of your orbital data for each moon. Calculations of the mass of Jupiter for each moon’s orbit. Calculate the time required to go to Mars from Earth using the lowest possible energy. Background Reading: Background reading for this lab can be found in your text book (specifically, Chapters 3 and 4 and especially section 4.4) and the notes for the course. Equipment provided by the lab: Computer with Internet Connection • Project CLEA program “The Revolutions of the Moons of Jupiter” Equipment provided by the student: Pen Calculator Background: Astronomers cannot directly measure many of the things they study, such as the masses and distances of the planets and their moons. Nevertheless, we can deduce some properties of celestial bodies from their motions despite the fact that we cannot directly measure them. In 1543, Nicolaus Copernicus hypothesized that the planets revolve in circular orbits around the sun. Tycho Brahe (1546‐1601) carefully observed the locations of the planets and 777 stars over a period of 20 years using a sextant and compass. These observations were used by Johannes Kepler, to deduce three empirical mathematical laws governing the orbit of one object around another. -
Arxiv:1209.5996V1 [Astro-Ph.EP] 26 Sep 2012 1.1
, 1{28 Is the Solar System stable ? Jacques Laskar ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France [email protected] R´esum´e. Since the formulation of the problem by Newton, and during three centuries, astrono- mers and mathematicians have sought to demonstrate the stability of the Solar System. Thanks to the numerical experiments of the last two decades, we know now that the motion of the pla- nets in the Solar System is chaotic, which prohibits any accurate prediction of their trajectories beyond a few tens of millions of years. The recent simulations even show that planetary colli- sions or ejections are possible on a period of less than 5 billion years, before the end of the life of the Sun. 1. Historical introduction 1 Despite the fundamental results of Henri Poincar´eabout the non-integrability of the three-body problem in the late 19th century, the discovery of the non-regularity of the Solar System's motion is very recent. It indeed required the possibility of calculating the trajectories of the planets with a realistic model of the Solar System over very long periods of time, corresponding to the age of the Solar System. This was only made possible in the past few years. Until then, and this for three centuries, the efforts of astronomers and mathematicians were devoted to demonstrate the stability of the Solar System. arXiv:1209.5996v1 [astro-ph.EP] 26 Sep 2012 1.1. Solar System stability The problem of the Solar System stability dates back to Newton's statement concerning the law of gravitation. -
Cold Plasma Diagnostics in the Jovian System
341 COLD PLASMA DIAGNOSTICS IN THE JOVIAN SYSTEM: BRIEF SCIENTIFIC CASE AND INSTRUMENTATION OVERVIEW J.-E. Wahlund(1), L. G. Blomberg(2), M. Morooka(1), M. André(1), A.I. Eriksson(1), J.A. Cumnock(2,3), G.T. Marklund(2), P.-A. Lindqvist(2) (1)Swedish Institute of Space Physics, SE-751 21 Uppsala, Sweden, E-mail: [email protected], [email protected], mats.andré@irfu.se, [email protected] (2)Alfvén Laboratory, Royal Institute of Technology, SE-100 44 Stockholm, Sweden, E-mail: [email protected], [email protected], [email protected], per- [email protected] (3)also at Center for Space Sciences, University of Texas at Dallas, U.S.A. ABSTRACT times for their atmospheres are of the order of a few The Jovian magnetosphere equatorial region is filled days at most. These atmospheres can therefore rightly with cold dense plasma that in a broad sense co-rotate with its magnetic field. The volcanic moon Io, which be termed exospheres, and their corresponding ionized expels sodium, sulphur and oxygen containing species, parts can be termed exo-ionospheres. dominates as a source for this cold plasma. The three Observations indicate that the exospheres of the three icy Galilean moons (Callisto, Ganymede, and Europa) icy Galilean moons (Europa, Ganymede and Callisto) also contribute with water group and oxygen ions. are oxygen rich [1, 2]. Several authors have also All the Galilean moons have thin atmospheres with modelled these exospheres [3, 4, 5], and the oxygen was residence times of a few days at most. -
Prelab 4: Revolution of the Moons of Jupiter
Name: Section: Date: Prelab 4: Revolution of the Moons of Jupiter Many of the parameters astronomers study cannot be directly measured; rather, they are inferred from properties or other observations of the bodies themselves. The mass of a celestial object is one such parameter|after all, how would one weigh something suspended in mid-air? In 1543, Nicolaus Copernicus hypothesized that the planets revolve in circular orbits around the sun. His contemporary Tycho Brahe, famous for his observations, carefully charted the locations of the planets and hundreds of stars over a period of twenty years, using a sextant and a compass. These observations were eventually used by Johannes Kepler, a student of Brahe's, to deduce three empirical mathematical laws governing the orbit of one object around another. Kepler's Third Law is the one that applies to this lab. In the early 17th century, with the recent invention of the telescope, Galileo was able to extend astronomical observations beyond what was available to the naked eye. He discovered four moons orbiting Jupiter and made exhaustive studies of this system. Galileo's work is of particular interest, not only for its pioneering observations, but because Jupiter and the four Galilean moons (as they came to be called) can be viewed as a miniature version of the larger Solar System in which they lie. Furthermore, Jupiter provided clear evidence that Copernicus's heliocentric model of the Solar System was physically possible; it is largely from these scientists' work that the modern study of Astronomy was born. The purpose of this lab is to determine the mass of Jupiter by observing the motion of the four Galilean moons: Io, Europa, Ganymede, and Callisto.