Cold Plasma Diagnostics in the Jovian System

Total Page:16

File Type:pdf, Size:1020Kb

Cold Plasma Diagnostics in the Jovian System 341 COLD PLASMA DIAGNOSTICS IN THE JOVIAN SYSTEM: BRIEF SCIENTIFIC CASE AND INSTRUMENTATION OVERVIEW J.-E. Wahlund(1), L. G. Blomberg(2), M. Morooka(1), M. André(1), A.I. Eriksson(1), J.A. Cumnock(2,3), G.T. Marklund(2), P.-A. Lindqvist(2) (1)Swedish Institute of Space Physics, SE-751 21 Uppsala, Sweden, E-mail: [email protected], [email protected], mats.andré@irfu.se, [email protected] (2)Alfvén Laboratory, Royal Institute of Technology, SE-100 44 Stockholm, Sweden, E-mail: [email protected], [email protected], [email protected], per- [email protected] (3)also at Center for Space Sciences, University of Texas at Dallas, U.S.A. ABSTRACT times for their atmospheres are of the order of a few The Jovian magnetosphere equatorial region is filled days at most. These atmospheres can therefore rightly with cold dense plasma that in a broad sense co-rotate with its magnetic field. The volcanic moon Io, which be termed exospheres, and their corresponding ionized expels sodium, sulphur and oxygen containing species, parts can be termed exo-ionospheres. dominates as a source for this cold plasma. The three Observations indicate that the exospheres of the three icy Galilean moons (Callisto, Ganymede, and Europa) icy Galilean moons (Europa, Ganymede and Callisto) also contribute with water group and oxygen ions. are oxygen rich [1, 2]. Several authors have also All the Galilean moons have thin atmospheres with modelled these exospheres [3, 4, 5], and the oxygen was residence times of a few days at most. Their ionized thought to be water products released from the surface ionospheric components interact dynamically with the by the action of magnetospheric energetic charged co-rotating magnetosphere of Jupiter and for example particle bombardment. Alkali atoms have been detected triggers energy transfer processes that give rise to in the exosphere of Europa [6], which has been auroral signatures at Jupiter. On these moons the surface suggested to come from sub-surface oceanic material interactions with the space environment determine their that has breached the icy surface in the past [7]. All the atmospheric and ionospheric properties. three icy moons are predicted to have sub-surface oceans [8]. Other possibly contributing atmospheric The range of processes associated with the Jovian sources are diffusion from the interior, meteorite impact magnetospheric interaction with the Galilean moons, evaporation and solar radiation decomposition and where the cold dense plasma expelled from these moons sputtering. The exosphere of Callisto may also harbour play a key role, are not well understood. Conversely, the significant amounts of CO2 as detected by the NIMS volatile material expelled from their interiors is instrument on board Galileo [9]. important for our understanding of the Jovian magnetosphere dynamics and energy transfer. A The exosphere of Io has its origin from volcanic activity Langmuir probe investigation, giving in-situ plasma on the moon as well as surface sputtering by density, temperatures, UV intensity and plasma speed magnetospheric charged particle bombardment. Sulphur with high time resolution, would be a most valuable dioxide (SO2) is released into the tenuous atmosphere component for future payloads to the Jupiter system. by volcanoes, which is then partly transformed into S2, Recent developments in low-mass instrumentation SO and O [10, 11, 12]. The atmosphere and ionosphere facilitate Langmuir probe in situ measurements on such of Io are highly variable, given the nature of the missions. volcanic sources. Also the night- and daytime atmospheric densities may differ by several orders of magnitude due to the temperature dependence of SO2 1. SCIENTIFIC CASE IN BRIEF frost on the surface. The surface pressure may at times reach a nbar, in which case the exobase is above the 1.1 Basic Properties of the Galilean Moons surface and may rise to an altitude of ~500 km. Atmospheres and Ionospheres The atmospheres of the Galilean moons of Jupiter are The ionospheres of the three icy Galilean moons have almost collision-free, and the atoms and molecules been observed with radio occultation techniques [13, within them can to a large degree directly leave the 14] as well as by using in situ upper hybrid emission weak gravitational field of these moons. The residence measurements [15] on the Galileo spacecraft. On —————————————————————————– Please do not put anything in the margins specified in Table 1. 342 Callisto peak ionospheric densities of up to 17,000 cm-3 The interaction of the Jovian magnetospheric plasma were inferred a few tens of km above the surface near with the cold plasma in the ionospheres of the Galilean the equator. The Callisto ionosphere seemed highly moons acts as a MHD dynamo, driving Alfvén waves variable in time (between flybys) and a detectable and field-aligned currents along Jupiter’s magnetic field ionosphere was only found when the ram-side was in that close (dissipates) in the Jovian ionosphere [24]. The sunlight, which indicates that both plasma impact cold plasma variations in the neighbourhood of the ionization and photo-ionization are sources for this Galilean moons therefore play a key role for the ionosphere. The ionosphere of Europa showed peak workings of this MHD dynamo. The effect is clearly densities up to 10,000 cm-3 near the surface. seen in HST images of UV emissions from Jupiter’s ionosphere at the sub-auroral foot points of the Galilean The ionosphere of Ganymede is a special case since this moons [25]. So far, such auroral spots have been found moon also has a substantial internally generated corresponding to Io, Europa and Ganymede, Io’s being magnetic field (700 nT near surface) that forms a small the far most luminous. magnetosphere inside the magnetosphere of Jupiter. The presence of a magnetic field affects the dynamics of the It has already been said that the plasma in the Jovian ionosphere [16, 17]. The dipole moment is aligned with magnetosphere approximately co-rotates with the the Jovian magnetic field and, thus, the interaction at planet. However, the co-rotation is not perfect, but Ganymede’s magnetopause favours reconnection rather the plasma lags behind co-rotation by a rate that steadily. The ionosphere is dominated by molecular increases with distance from the planet [26]. Inside 20 oxygen ions at polar latitudes and by atomic oxygen RJ the plasma flow is close to co-rotational, while ions at low latitudes [4]. The polar wind plasma outflow outside this distance the flow lags with respect to co- along “open” polar cap field lines to Jupiter’s rotation and stays around 230 km/s. magnetosphere would likely consist of atomic oxygen ions because of their greater mobility. It has been Io is a very important source of plasma for the Jovian suggested that the ice properties are modified by the magnetosphere. Exospheric SO2 molecules escape the impacts of the energetic particles entering on polar cap gravitation field of Io and move into the magnetosphere (open) field lines [18]. Callisto and Europa do not have of Jupiter in copious amounts. There the neutrals are significant permanent magnetisation. Rather, an induced ionized and dissociated by magnetospheric electrons. magnetic field is set up through the interaction with The total source of ions from Io is 1028-1029 ions/s. The Jupiter’s planetary field. newly created ions are affected by the Lorentz force and are picked-up by the co-rotating Jovian magnetic field The ionosphere of Io has been confirmed by radio and form the Io plasma torus. The size of the torus occultation measurements on board Pioneer 10 and large, where number densities reach 2000 cm-3 near Io Galileo [19, 20]. The densities vary considerably and decreasing outward with a scale height of the order between the leading and trailing hemispheres, showing of a Jupiter radius. the influence of changes in its atmosphere as well as in the co-rotational magnetospheric flow. The ionospheric Since the Io plasma torus is slightly collisional, the peak was below 300 km, and typical plasma densities plasma as a whole is heated via this pickup process. The near Io reach 104-105 cm-3. Surprisingly Io’s ionosphere detection of an extended and stagnant wake downstream was found dominated by Na+ [21]. Sulphuric ion of Io [27] indicates that the plasma takes a considerable components exist, but are less abundant. The belief is time to accelerate to co-rotation speed. The Io plasma that surface sputtering of NaO2 and Na2O by heavy torus consists of an inner cold part (L<6, Ti~1 eV) and charged particle bombardment from the surrounding an outer hotter part (Ti~100 eV) that is somewhat colder magnetosphere cause sodium to be the dominant ion. than the pickup energy. 1.2 Dynamic Interaction with the Jovian 2. INSTRUMENTATION OVERVIEW Magnetosphere The four Galilean moons orbit Jupiter well inside the For future detailed investigation of the Galilean moons Jovian magnetopause and, consequently, interact and their interaction with the Jovian magnetosphere a primarily with Jupiter’s co-rotating magnetosphere. The most valuable payload element would be a double interaction at the Galilean moons is sub-magnetosonic, Langmuir probe instrument. Two state-of-the-art and the flow is diverted gradually without the formation examples of such sensors are the RPC-LAP instrument of shock fronts. At Callisto, the Mach number may at on Rosetta [28, 29], and the RPWS LP on board times exceed unity, although Galileo observed no such Cassini/Huygens [30]. Both these examples employ cases [18]. A more detailed account for the titanium nitride (TiN) surface coatings on the sensors, magnetospheric electrodynamics can be found in two first flown on the Swedish satellite Astrid-2, to ensure companion papers [22, 23].
Recommended publications
  • Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT
    N T Z 33854 C *?** IS81 1? JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I '>•*,' T COLLEGE OF ENGINEERING Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I Prepared Under Contract No. NGR 33-010-071 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by NASA-Cornell Doctoral Design Trainee Group (196T-TO) October 1971 College of Engineering Cornell University Ithaca, New York Table of Contents Volume I Preface Chapter I: The Planet Jupiter: A Brief Summary B 1-2 r. Mechanical Properties of the Planet Jupiter. P . T-fi r> 1-10 F T-lfi F T-lfi 0 1-29 H, 1-32 T 1-39 References ... p. I-k2 Chapter II: The Spacecraft Design and Mission Definition A. Introduction p. II-l B. Organizational Structure and the JOSE Mission p. II-l C. JOSE Components p. II-1* D. Proposed Configuration p. II-5 Bibliography and References p. 11-10 Chapter III: Mission Trajectories A. Interplanetary Trajectory Analysis .... p. III-l B. Jupiter Orbital Considerations p. III-6 Bibliography and References. p. 111-38 Chapter IV: Attitude Control A. Introduction and Summary . p. IV-1 B. Expected Disturbance Moments M in Interplanetary Space . p. IV-3 C. Radiation-Produced Impulse Results p. IV-12 D. Meteoroid-Produced Impulse Results p. IV-13 E. Inertia Wheel Analysis p. IV-15 F. Attitude System Tradeoff Analysis p. IV-19 G. Conclusion P. IV-21 References and Bibliography p. TV-26 Chapter V: Propulsion Subsystem A. Mission Requirements p. V-l B. Orbit Insertion Analysis p.
    [Show full text]
  • Adaptive Multibody Gravity Assist Tours Design in Jovian System for the Ganymede Landing
    TO THE ADAPTIVE MULTIBODY GRAVITY ASSIST TOURS DESIGN IN JOVIAN SYSTEM FOR THE GANYMEDE LANDING Grushevskii A.V.(1), Golubev Yu.F.(2), Koryanov V.V.(3), and Tuchin A.G.(4) (1)KIAM (Keldysh Institute of Applied Mathematics), Miusskaya sq., 4, Moscow, 125047, Russia, +7 495 333 8067, E-mail: [email protected] (2)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (3)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (4)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] Keywords: gravity assist, adaptive mission design, trajectory design, TID, phase beam Introduction Modern space missions inside Jovian system are not possible without multiple gravity assists (as well as in Saturnian system, etc.). The orbit design for real upcoming very complicated missions by NASA, ESA, RSA should be adaptive to mission parameters, such as: the time of Jovian system arrival, incomplete information about ephemeris of Galilean Moons and their gravitational fields, errors of flybys implementation, instrumentation deflections. Limited dynamic capabilities, taking place in case of maneuvering around Jupiter's moons, demand multiple encounters (about 15-30 times) for these purposes. Flexible algorithm of current mission scenarios synthesis (specially selected) and their operative transformation is required. Mission design is complicated due to requirements of the Ganymede Orbit Insertion (GOI) ("JUICE" ESA) and also Ganymede Landing implementation ("Laplas-P" RSA [1]) comparing to the ordinary early ―velocity gain" missions since ―Pioneers‖ and "Voyagers‖. Thus such scenario splits in two parts. Part 1(P1), as usually, would be used to reduce the spacecraft’s orbital energy with respect to Jupiter and set up the conditions for more frequent flybys.
    [Show full text]
  • Our Planetary System (Chapter 7) Based on Chapter 7
    Our Planetary System (Chapter 7) Based on Chapter 7 • This material will be useful for understanding Chapters 8, 9, 10, 11, and 12 on “Formation of the solar system”, “Planetary geology”, “Planetary atmospheres”, “Jovian planet systems”, and “Remnants of ice and rock” • Chapters 3 and 6 on “The orbits of the planets” and “Telescopes” will be useful for understanding this chapter Goals for Learning • How do planets rotate on their axes and orbit the Sun? • What are the planets made of? • What other classes of objects are there in the solar system? Orbits mostly lie in the same flat plane All planets go around the Sun in the same direction Most orbits are close to circular Not coincidences! Most planets rotate in the same “sense” as they orbit the Sun Coincidence? Planetary equators mostly lie in the same plane as their orbits Coincidence? • Interactive Figure: Orbital and Rotational Properties of the Planets Rotation and Orbits of Moons • Most moons (especially the larger ones) orbit in near-circular orbits in the same plane as the equator of their parent planet • Most moons rotate so that their equator is in the plane of their orbit • Most moons rotate in the same “sense” as their orbit around the parent planet • Everything is rotating/orbiting in the same direction A Brief Tour • Distance from Sun •Size •Mass • Composition • Temperature • Rings/Moons Sun 695000 km = 108 RE 333000 MEarth 98% Hydrogen and helium 99.9% total mass of solar system Surface = 5800K Much hotter inside Giant ball of gas Gravity => orbits Heat/light => weather
    [Show full text]
  • Jupiter Mass
    CESAR Science Case Jupiter Mass Calculating a planet’s mass from the motion of its moons Student’s Guide Mass of Jupiter 2 CESAR Science Case Table of Contents The Mass of Jupiter ........................................................................... ¡Error! Marcador no definido. Kepler’s Three Laws ...................................................................................................................................... 4 Activity 1: Properties of the Galilean Moons ................................................................................................. 6 Activity 2: Calculate the period of your favourite moon ................................................................................. 9 Activity 3: Calculate the orbital radius of your favourite moon .................................................................... 12 Activity 4: Calculate the Mass of Jupiter ..................................................................................................... 15 Additional Activity: Predict a Transit ............................................................................................................ 16 To know more… .......................................................................................................................... 19 Links ............................................................................................................................................ 19 Mass of Jupiter 3 CESAR Science Case Background Kepler’s Three Laws The three Kepler’s Laws, published between
    [Show full text]
  • The Effect of Jupiter\'S Mass Growth on Satellite Capture
    A&A 414, 727–734 (2004) Astronomy DOI: 10.1051/0004-6361:20031645 & c ESO 2004 Astrophysics The effect of Jupiter’s mass growth on satellite capture Retrograde case E. Vieira Neto1;?,O.C.Winter1, and T. Yokoyama2 1 Grupo de Dinˆamica Orbital & Planetologia, UNESP, CP 205 CEP 12.516-410 Guaratinguet´a, SP, Brazil e-mail: [email protected] 2 Universidade Estadual Paulista, IGCE, DEMAC, CP 178 CEP 13.500-970 Rio Claro, SP, Brazil e-mail: [email protected] Received 13 June 2003 / Accepted 12 September 2003 Abstract. Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L1 indicates that mass accretion provides an increase of the confinement region (delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M . We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R a 400 R and 0 e 0:5. The results give Jupiter’s mass at the X moment when the particle escapes from the planet.
    [Show full text]
  • Jet Streams Anomalies As Possible Short-Term Precursors Of
    Research in Geophysics 2014; volume 4:4939 Jet streams anomalies as the existence of thermal fields, con nected with big linear structures and systems of crust Correspondence: Hong-Chun Wu, Institute of possible short-term precursors faults.2 Anomalous variations of latent heat Occupational Safety and Health, Safety of earthquakes with M 6.0 flow were observed for the 2003 M 7.6 Colima Department, Shijr City, Taipei, Taiwan. > (Mexico) earthquake.3 The atmospheric Tel. +886.2.22607600227 - Fax: +886.2.26607732. E-mail: [email protected] Hong-Chun Wu,1 Ivan N. Tikhonov2 effects of ionization are observed at the alti- 1Institute of Occupational Safety and tudes of top of the atmosphere (10-12 km). Key words: earthquake, epicenter, jet stream, pre- Health, Safety Department, Shijr City, Anomalous changes in outgoing longwave cursory anomaly. radiation were recorded at the height of 300 Taipei, Taiwan; 2Institute of Marine GPa before the 26 December 2004 M 9.0 Acknowledgments: the authors would like to Geology and Geophysics, FEB RAS; w express their most profound gratitude to the Indonesia earthquake.4 These anomalous ther- Yuzhno-Sakhalinsk, Russia National Center for Environmental Prediction of mal events occurred 4-20 days prior the earth- the USA and the National Earthquake quakes.5-8 Information Center on Earthquakes of the U.S. Local anomalous changes in the ionosphere Geological Survey for data on jet streams and 9-11 earthquakes on the Internet. Abstract over epicenters can precede earthquakes. Statistical analysis showed that these changes Dedications: the authors dedicate this work to occurred about 1-5 days before seismic the memory of Miss Cai Bi-Yu, who died in Satellite data of thermal images revealed events.12 To connect the listed above abnormal Taiwan during the 1999 earthquake with magni- the existence of thermal fields, connected with phenomena to preparation of earthquakes, tude M=7.3.
    [Show full text]
  • Exoplanet Atmospheres and Interiors Types of Planets
    Exoplanet Atmospheres and Interiors Types of Planets • Hot Jupiters – Most common, because of observaonal biases – Temperatures ~ 1000K • Neptunes – May resemble the gas giants in our solar system • Super-earths – Rocky? – Water planets? • Terrestrial Atmosphere Basics • Ρ(h) = P(0) e-h/h0 • h0=kT/mg – k = Boltzmann constant – T=temperature – m=mass of par?cle – g=gravitaonal acceleraon • Density falls off exponen?ally with height Atmospheric Complicaons Stars have relavely simple atmospheres • A few diatomic molecules Brown Dwarfs and Planets are more complex • Temperature Inversions (external heang) • Clouds – Probably exist in T dwarfs – precipitaon • Molecules • Chemistry Generalized Thermal Atmosphere • Blue regions are convecve = lapse rate Marley, ARAA, fig 1 Atmospheric Chemistry • Ionizaon equilibrium • Chemical equilibrium High T Low T Low P High P Marley, ARAA, Fig 4 Marley, ARAA, Fig 3 • 2 MJ planet, T=600K, g=10 Marley, ARAA, Fig 5 Condensaon Sequence Transit Photometry Transit widths may reveal high al?tude haze 2 2 Excess eclipse depth δ ≃ ((Rp+ nH)/R∗) – (Rp/R∗) H = pressure scale height n = number of scale heights For typical hot Jupiters, δ ≅ 0.1% Observaons: Photometry • Precision photometry of transi?ng planet can give temperature – Comparison with Teq gives albedo (for Rp) • Inference of Na D1,D2 lines in HD 209458: – Eclipse 0.0002 deeper in lines – Charbonneau et al 2002, ApJ, 568, 377 Observaons: Photometry • Precision photometry of transi?ng planet can give temperature 2 2 – fin = (1-A) L* πRp / 4πd 2 4 – fout = 4πRp σTp – Comparison with Teq gives albedo (for Rp) For A=0: TP=T*√(R*/2d) Hot Jupiters • A is generally small: no clouds • Phase curve -> atmospheric dynamics • Flux variaons -> day to night temperature variaons • Hot Jupiters expected to have jet streams Basic Atmospheric Circulaon – no rotaon (Hadley cells) Jupiter HD 189733b • Temperature: 970-1200K • Peak 30o East • Winds up to 8700 km/h • H atm.
    [Show full text]
  • A Featureless Transmission Spectrum for the Neptune-Mass Exoplanet GJ 436B
    A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b Heather A. Knutson1, Björn Benneke1,2, Drake Deming3, & Derek Homeier4 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 3Department of Astronomy, University of Maryland, College Park, MD 20742, USA. 4Centre de Recherche Astrophysique de Lyon, 69364 Lyon, France. GJ 436b is a warm (approximately 800 K) extrasolar planet that periodically eclipses its low-mass (0.5 MSun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations1,2,3 have indicated that its atmosphere has a methane-to-CO ratio that is 105 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures4,5. A recent study proposed that this unusual chemistry could be explained if the planet’s atmosphere is significantly enhanced in elements heavier than H and He6. In this study we present complementary observations of GJ 436b’s atmosphere obtained during transit. Our observations indicate that the planet’s transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with a significance of 48σ. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relatively hydrogen-poor (3% H/He mass fraction) atmospheric composition7,8,9. We observed four transits of the Neptune-mass planet GJ 436b on UT Oct 26, Nov 29, and Dec 10 2012, and Jan 2 2013 using the red grism (1.2-1.6 µm) on the Hubble Space Telescope (HST) Wide Field Camera 3 instrument.
    [Show full text]
  • REVIEW Doi:10.1038/Nature13782
    REVIEW doi:10.1038/nature13782 Highlights in the study of exoplanet atmospheres Adam S. Burrows1 Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends. he modern era of exoplanet research started in 1995 with the Earth-like planet requires the ability to measure transit depths 100 times discovery of the planet 51 Pegasi b1, when astronomers detected more precisely. It was not long before many hundreds of gas giants were the periodic radial-velocity Doppler wobble in its star, 51 Peg, detected both in transit and by the radial-velocity method, the former Tinduced by the planet’s nearly circular orbit. With these data, and requiring modest equipment and the latter requiring larger telescopes knowledge of the star, the orbital period (P) and semi-major axis (a) with state-of-the-art spectrometers with which to measure the small could be derived, and the planet’s mass constrained. However, the incli- stellar wobbles. Both techniques favour close-in giants, so for many nation of the planet’s orbit was unknown and, therefore, only a lower years these objects dominated the bestiary of known exoplanets.
    [Show full text]
  • Moon–Magnetosphere Interactions: a Tutorial
    Advances in Space Research 33 (2004) 2061–2077 www.elsevier.com/locate/asr Moon–magnetosphere interactions: a tutorial M.G. Kivelson a,b,* a University of California, Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90095-1567, USA b Department of Earth and Space Sciences, UCLA, Los Angeles, CA 90095-1567, USA Received 8 May 2003; received in revised form 13 August 2003; accepted 18 August 2003 Abstract The interactions between the Galilean satellites and the plasma of the Jovian magnetosphere, acting on spatial scales from that of ion gyroradii to that of magnetohydrodynamics (MHD), change the plasma momentum, temperature, and phase space distribution functions and generate strong electrical currents. In the immediate vicinity of the moons, these currents are often highly structured, possibly because of varying ionospheric conductivity and possibly because of non-uniform pickup rates. Ion pickup changes the velocity space distribution of energetic particles, f (v), where v is velocity. Distributions become more anisotropic and can become unstable to wave generation. That there would be interesting plasma responses near Io was fully anticipated, but one of the surprises of Galileo’s mission was the range of effects observed at all of the Galilean satellites. Electron beams and an assortment of MHD and plasma waves develop in the regions around the moons, although each interaction region is different. Coupling of the plasma near the moons to the Jovian ionosphere creates auroral footprints and, in the case of Io, produces a leading trail in the ionosphere that extends almost half way around Jupiter. The energy source driving the auroral signatures is not fully understood but must require field aligned electric fields that accelerate elections at the feet of the flux tubes of Io and Europa, bodies that interact directly with the incident plasma, and at the foot of the flux tube of Ganymede, a body that is shielded from direct interaction with the background plasma by its magnetospheric cavity.
    [Show full text]
  • The Magnetosphere-Ionosphere Observatory (MIO)
    1 The Magnetosphere-Ionosphere Observatory (MIO) …a mission concept to answer the question “What Drives Auroral Arcs” ♥ Get inside the aurora in the magnetosphere ♥ Know you’re inside the aurora ♥ Measure critical gradients writeup by: Joe Borovsky Los Alamos National Laboratory [email protected] (505)667-8368 updated April 4, 2002 Abstract: The MIO mission concept involves a tight swarm of satellites in geosynchronous orbit that are magnetically connected to a ground-based observatory, with a satellite-based electron beam establishing the precise connection to the ionosphere. The aspect of this mission that enables it to solve the outstanding auroral problem is “being in the right place at the right time – and knowing it”. Each of the many auroral-arc-generator mechanisms that have been hypothesized has a characteristic gradient in the magnetosphere as its fingerprint. The MIO mission is focused on (1) getting inside the auroral generator in the magnetosphere, (2) knowing you are inside, and (3) measuring critical gradients inside the generator. The decisive gradient measurements are performed in the magnetosphere with satellite separations of 100’s of km. The magnetic footpoint of the swarm is marked in the ionosphere with an electron gun firing into the loss cone from one satellite. The beamspot is detected from the ground optically and/or by HF radar, and ground-based auroral imagers and radar provide the auroral context of the satellite swarm. With the satellites in geosynchronous orbit, a single ground observatory can spot the beam image and monitor the aurora, with full-time conjunctions between the satellites and the aurora.
    [Show full text]
  • 4.4 Atmospheres of Solar System Planets
    4.4. ATMOSPHERES OF SOLAR SYSTEM PLANETS 87 4.4 Atmospheres of solar system planets For spectroscopic studies of planets one needs to understand the net emission of the radiation from the surface or the atmosphere. Radiative transfer in planetary atmosphere is therefore a very important topic for the analysis of solar system objects but also for direct observations of extra-solar planets. In this section we discuss some basic properties of planetary atmospheres. 4.4.1 Hydrostatic structure of atmospheres The planet structure equation from Section 3.2 apply also for planetary atmospheres. One can often make the following simplifications: – the atmosphere can be calculated in a plane-parallel geometry considering only a vertical or height dependence z, – the vertical dependence of the gravitational acceleration can often be neglected for the pressure range 10 bar – 0.01 bar and one can just use g(z)=g(z = 0) = g(R)= 2 g = GMP /RP . – the equation of state can be described by the ideal gas law ⇢kT µP P (⇢)= or ⇢(P )= , µ kT where µ is the mean particle mass (in [kg] or [g]), – a mean particle mass which is constant with height µ(z)=µ can often be used in a first approximation, – a temperature which is constant with height T (z)=T can often be used as first approximation. Pressure structure. The di↵erential equation for the pressure gradient is: dP (z) µ(z)P (z) = g(z)⇢(z)= g(z) dz − − kT(z) which yields the general solution: z 1/H (z)dz kT(z) P (z)=P e− 0 P with H (z)= .
    [Show full text]