Cold Plasma Diagnostics in the Jovian System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT
N T Z 33854 C *?** IS81 1? JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I '>•*,' T COLLEGE OF ENGINEERING Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I Prepared Under Contract No. NGR 33-010-071 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by NASA-Cornell Doctoral Design Trainee Group (196T-TO) October 1971 College of Engineering Cornell University Ithaca, New York Table of Contents Volume I Preface Chapter I: The Planet Jupiter: A Brief Summary B 1-2 r. Mechanical Properties of the Planet Jupiter. P . T-fi r> 1-10 F T-lfi F T-lfi 0 1-29 H, 1-32 T 1-39 References ... p. I-k2 Chapter II: The Spacecraft Design and Mission Definition A. Introduction p. II-l B. Organizational Structure and the JOSE Mission p. II-l C. JOSE Components p. II-1* D. Proposed Configuration p. II-5 Bibliography and References p. 11-10 Chapter III: Mission Trajectories A. Interplanetary Trajectory Analysis .... p. III-l B. Jupiter Orbital Considerations p. III-6 Bibliography and References. p. 111-38 Chapter IV: Attitude Control A. Introduction and Summary . p. IV-1 B. Expected Disturbance Moments M in Interplanetary Space . p. IV-3 C. Radiation-Produced Impulse Results p. IV-12 D. Meteoroid-Produced Impulse Results p. IV-13 E. Inertia Wheel Analysis p. IV-15 F. Attitude System Tradeoff Analysis p. IV-19 G. Conclusion P. IV-21 References and Bibliography p. TV-26 Chapter V: Propulsion Subsystem A. Mission Requirements p. V-l B. Orbit Insertion Analysis p. -
Adaptive Multibody Gravity Assist Tours Design in Jovian System for the Ganymede Landing
TO THE ADAPTIVE MULTIBODY GRAVITY ASSIST TOURS DESIGN IN JOVIAN SYSTEM FOR THE GANYMEDE LANDING Grushevskii A.V.(1), Golubev Yu.F.(2), Koryanov V.V.(3), and Tuchin A.G.(4) (1)KIAM (Keldysh Institute of Applied Mathematics), Miusskaya sq., 4, Moscow, 125047, Russia, +7 495 333 8067, E-mail: [email protected] (2)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (3)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (4)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] Keywords: gravity assist, adaptive mission design, trajectory design, TID, phase beam Introduction Modern space missions inside Jovian system are not possible without multiple gravity assists (as well as in Saturnian system, etc.). The orbit design for real upcoming very complicated missions by NASA, ESA, RSA should be adaptive to mission parameters, such as: the time of Jovian system arrival, incomplete information about ephemeris of Galilean Moons and their gravitational fields, errors of flybys implementation, instrumentation deflections. Limited dynamic capabilities, taking place in case of maneuvering around Jupiter's moons, demand multiple encounters (about 15-30 times) for these purposes. Flexible algorithm of current mission scenarios synthesis (specially selected) and their operative transformation is required. Mission design is complicated due to requirements of the Ganymede Orbit Insertion (GOI) ("JUICE" ESA) and also Ganymede Landing implementation ("Laplas-P" RSA [1]) comparing to the ordinary early ―velocity gain" missions since ―Pioneers‖ and "Voyagers‖. Thus such scenario splits in two parts. Part 1(P1), as usually, would be used to reduce the spacecraft’s orbital energy with respect to Jupiter and set up the conditions for more frequent flybys. -
Our Planetary System (Chapter 7) Based on Chapter 7
Our Planetary System (Chapter 7) Based on Chapter 7 • This material will be useful for understanding Chapters 8, 9, 10, 11, and 12 on “Formation of the solar system”, “Planetary geology”, “Planetary atmospheres”, “Jovian planet systems”, and “Remnants of ice and rock” • Chapters 3 and 6 on “The orbits of the planets” and “Telescopes” will be useful for understanding this chapter Goals for Learning • How do planets rotate on their axes and orbit the Sun? • What are the planets made of? • What other classes of objects are there in the solar system? Orbits mostly lie in the same flat plane All planets go around the Sun in the same direction Most orbits are close to circular Not coincidences! Most planets rotate in the same “sense” as they orbit the Sun Coincidence? Planetary equators mostly lie in the same plane as their orbits Coincidence? • Interactive Figure: Orbital and Rotational Properties of the Planets Rotation and Orbits of Moons • Most moons (especially the larger ones) orbit in near-circular orbits in the same plane as the equator of their parent planet • Most moons rotate so that their equator is in the plane of their orbit • Most moons rotate in the same “sense” as their orbit around the parent planet • Everything is rotating/orbiting in the same direction A Brief Tour • Distance from Sun •Size •Mass • Composition • Temperature • Rings/Moons Sun 695000 km = 108 RE 333000 MEarth 98% Hydrogen and helium 99.9% total mass of solar system Surface = 5800K Much hotter inside Giant ball of gas Gravity => orbits Heat/light => weather -
Jupiter Mass
CESAR Science Case Jupiter Mass Calculating a planet’s mass from the motion of its moons Student’s Guide Mass of Jupiter 2 CESAR Science Case Table of Contents The Mass of Jupiter ........................................................................... ¡Error! Marcador no definido. Kepler’s Three Laws ...................................................................................................................................... 4 Activity 1: Properties of the Galilean Moons ................................................................................................. 6 Activity 2: Calculate the period of your favourite moon ................................................................................. 9 Activity 3: Calculate the orbital radius of your favourite moon .................................................................... 12 Activity 4: Calculate the Mass of Jupiter ..................................................................................................... 15 Additional Activity: Predict a Transit ............................................................................................................ 16 To know more… .......................................................................................................................... 19 Links ............................................................................................................................................ 19 Mass of Jupiter 3 CESAR Science Case Background Kepler’s Three Laws The three Kepler’s Laws, published between -
The Effect of Jupiter\'S Mass Growth on Satellite Capture
A&A 414, 727–734 (2004) Astronomy DOI: 10.1051/0004-6361:20031645 & c ESO 2004 Astrophysics The effect of Jupiter’s mass growth on satellite capture Retrograde case E. Vieira Neto1;?,O.C.Winter1, and T. Yokoyama2 1 Grupo de Dinˆamica Orbital & Planetologia, UNESP, CP 205 CEP 12.516-410 Guaratinguet´a, SP, Brazil e-mail: [email protected] 2 Universidade Estadual Paulista, IGCE, DEMAC, CP 178 CEP 13.500-970 Rio Claro, SP, Brazil e-mail: [email protected] Received 13 June 2003 / Accepted 12 September 2003 Abstract. Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L1 indicates that mass accretion provides an increase of the confinement region (delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M . We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R a 400 R and 0 e 0:5. The results give Jupiter’s mass at the X moment when the particle escapes from the planet. -
Jet Streams Anomalies As Possible Short-Term Precursors Of
Research in Geophysics 2014; volume 4:4939 Jet streams anomalies as the existence of thermal fields, con nected with big linear structures and systems of crust Correspondence: Hong-Chun Wu, Institute of possible short-term precursors faults.2 Anomalous variations of latent heat Occupational Safety and Health, Safety of earthquakes with M 6.0 flow were observed for the 2003 M 7.6 Colima Department, Shijr City, Taipei, Taiwan. > (Mexico) earthquake.3 The atmospheric Tel. +886.2.22607600227 - Fax: +886.2.26607732. E-mail: [email protected] Hong-Chun Wu,1 Ivan N. Tikhonov2 effects of ionization are observed at the alti- 1Institute of Occupational Safety and tudes of top of the atmosphere (10-12 km). Key words: earthquake, epicenter, jet stream, pre- Health, Safety Department, Shijr City, Anomalous changes in outgoing longwave cursory anomaly. radiation were recorded at the height of 300 Taipei, Taiwan; 2Institute of Marine GPa before the 26 December 2004 M 9.0 Acknowledgments: the authors would like to Geology and Geophysics, FEB RAS; w express their most profound gratitude to the Indonesia earthquake.4 These anomalous ther- Yuzhno-Sakhalinsk, Russia National Center for Environmental Prediction of mal events occurred 4-20 days prior the earth- the USA and the National Earthquake quakes.5-8 Information Center on Earthquakes of the U.S. Local anomalous changes in the ionosphere Geological Survey for data on jet streams and 9-11 earthquakes on the Internet. Abstract over epicenters can precede earthquakes. Statistical analysis showed that these changes Dedications: the authors dedicate this work to occurred about 1-5 days before seismic the memory of Miss Cai Bi-Yu, who died in Satellite data of thermal images revealed events.12 To connect the listed above abnormal Taiwan during the 1999 earthquake with magni- the existence of thermal fields, connected with phenomena to preparation of earthquakes, tude M=7.3. -
Exoplanet Atmospheres and Interiors Types of Planets
Exoplanet Atmospheres and Interiors Types of Planets • Hot Jupiters – Most common, because of observaonal biases – Temperatures ~ 1000K • Neptunes – May resemble the gas giants in our solar system • Super-earths – Rocky? – Water planets? • Terrestrial Atmosphere Basics • Ρ(h) = P(0) e-h/h0 • h0=kT/mg – k = Boltzmann constant – T=temperature – m=mass of par?cle – g=gravitaonal acceleraon • Density falls off exponen?ally with height Atmospheric Complicaons Stars have relavely simple atmospheres • A few diatomic molecules Brown Dwarfs and Planets are more complex • Temperature Inversions (external heang) • Clouds – Probably exist in T dwarfs – precipitaon • Molecules • Chemistry Generalized Thermal Atmosphere • Blue regions are convecve = lapse rate Marley, ARAA, fig 1 Atmospheric Chemistry • Ionizaon equilibrium • Chemical equilibrium High T Low T Low P High P Marley, ARAA, Fig 4 Marley, ARAA, Fig 3 • 2 MJ planet, T=600K, g=10 Marley, ARAA, Fig 5 Condensaon Sequence Transit Photometry Transit widths may reveal high al?tude haze 2 2 Excess eclipse depth δ ≃ ((Rp+ nH)/R∗) – (Rp/R∗) H = pressure scale height n = number of scale heights For typical hot Jupiters, δ ≅ 0.1% Observaons: Photometry • Precision photometry of transi?ng planet can give temperature – Comparison with Teq gives albedo (for Rp) • Inference of Na D1,D2 lines in HD 209458: – Eclipse 0.0002 deeper in lines – Charbonneau et al 2002, ApJ, 568, 377 Observaons: Photometry • Precision photometry of transi?ng planet can give temperature 2 2 – fin = (1-A) L* πRp / 4πd 2 4 – fout = 4πRp σTp – Comparison with Teq gives albedo (for Rp) For A=0: TP=T*√(R*/2d) Hot Jupiters • A is generally small: no clouds • Phase curve -> atmospheric dynamics • Flux variaons -> day to night temperature variaons • Hot Jupiters expected to have jet streams Basic Atmospheric Circulaon – no rotaon (Hadley cells) Jupiter HD 189733b • Temperature: 970-1200K • Peak 30o East • Winds up to 8700 km/h • H atm. -
A Featureless Transmission Spectrum for the Neptune-Mass Exoplanet GJ 436B
A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b Heather A. Knutson1, Björn Benneke1,2, Drake Deming3, & Derek Homeier4 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 3Department of Astronomy, University of Maryland, College Park, MD 20742, USA. 4Centre de Recherche Astrophysique de Lyon, 69364 Lyon, France. GJ 436b is a warm (approximately 800 K) extrasolar planet that periodically eclipses its low-mass (0.5 MSun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations1,2,3 have indicated that its atmosphere has a methane-to-CO ratio that is 105 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures4,5. A recent study proposed that this unusual chemistry could be explained if the planet’s atmosphere is significantly enhanced in elements heavier than H and He6. In this study we present complementary observations of GJ 436b’s atmosphere obtained during transit. Our observations indicate that the planet’s transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with a significance of 48σ. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relatively hydrogen-poor (3% H/He mass fraction) atmospheric composition7,8,9. We observed four transits of the Neptune-mass planet GJ 436b on UT Oct 26, Nov 29, and Dec 10 2012, and Jan 2 2013 using the red grism (1.2-1.6 µm) on the Hubble Space Telescope (HST) Wide Field Camera 3 instrument. -
REVIEW Doi:10.1038/Nature13782
REVIEW doi:10.1038/nature13782 Highlights in the study of exoplanet atmospheres Adam S. Burrows1 Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends. he modern era of exoplanet research started in 1995 with the Earth-like planet requires the ability to measure transit depths 100 times discovery of the planet 51 Pegasi b1, when astronomers detected more precisely. It was not long before many hundreds of gas giants were the periodic radial-velocity Doppler wobble in its star, 51 Peg, detected both in transit and by the radial-velocity method, the former Tinduced by the planet’s nearly circular orbit. With these data, and requiring modest equipment and the latter requiring larger telescopes knowledge of the star, the orbital period (P) and semi-major axis (a) with state-of-the-art spectrometers with which to measure the small could be derived, and the planet’s mass constrained. However, the incli- stellar wobbles. Both techniques favour close-in giants, so for many nation of the planet’s orbit was unknown and, therefore, only a lower years these objects dominated the bestiary of known exoplanets. -
Moon–Magnetosphere Interactions: a Tutorial
Advances in Space Research 33 (2004) 2061–2077 www.elsevier.com/locate/asr Moon–magnetosphere interactions: a tutorial M.G. Kivelson a,b,* a University of California, Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90095-1567, USA b Department of Earth and Space Sciences, UCLA, Los Angeles, CA 90095-1567, USA Received 8 May 2003; received in revised form 13 August 2003; accepted 18 August 2003 Abstract The interactions between the Galilean satellites and the plasma of the Jovian magnetosphere, acting on spatial scales from that of ion gyroradii to that of magnetohydrodynamics (MHD), change the plasma momentum, temperature, and phase space distribution functions and generate strong electrical currents. In the immediate vicinity of the moons, these currents are often highly structured, possibly because of varying ionospheric conductivity and possibly because of non-uniform pickup rates. Ion pickup changes the velocity space distribution of energetic particles, f (v), where v is velocity. Distributions become more anisotropic and can become unstable to wave generation. That there would be interesting plasma responses near Io was fully anticipated, but one of the surprises of Galileo’s mission was the range of effects observed at all of the Galilean satellites. Electron beams and an assortment of MHD and plasma waves develop in the regions around the moons, although each interaction region is different. Coupling of the plasma near the moons to the Jovian ionosphere creates auroral footprints and, in the case of Io, produces a leading trail in the ionosphere that extends almost half way around Jupiter. The energy source driving the auroral signatures is not fully understood but must require field aligned electric fields that accelerate elections at the feet of the flux tubes of Io and Europa, bodies that interact directly with the incident plasma, and at the foot of the flux tube of Ganymede, a body that is shielded from direct interaction with the background plasma by its magnetospheric cavity. -
The Magnetosphere-Ionosphere Observatory (MIO)
1 The Magnetosphere-Ionosphere Observatory (MIO) …a mission concept to answer the question “What Drives Auroral Arcs” ♥ Get inside the aurora in the magnetosphere ♥ Know you’re inside the aurora ♥ Measure critical gradients writeup by: Joe Borovsky Los Alamos National Laboratory [email protected] (505)667-8368 updated April 4, 2002 Abstract: The MIO mission concept involves a tight swarm of satellites in geosynchronous orbit that are magnetically connected to a ground-based observatory, with a satellite-based electron beam establishing the precise connection to the ionosphere. The aspect of this mission that enables it to solve the outstanding auroral problem is “being in the right place at the right time – and knowing it”. Each of the many auroral-arc-generator mechanisms that have been hypothesized has a characteristic gradient in the magnetosphere as its fingerprint. The MIO mission is focused on (1) getting inside the auroral generator in the magnetosphere, (2) knowing you are inside, and (3) measuring critical gradients inside the generator. The decisive gradient measurements are performed in the magnetosphere with satellite separations of 100’s of km. The magnetic footpoint of the swarm is marked in the ionosphere with an electron gun firing into the loss cone from one satellite. The beamspot is detected from the ground optically and/or by HF radar, and ground-based auroral imagers and radar provide the auroral context of the satellite swarm. With the satellites in geosynchronous orbit, a single ground observatory can spot the beam image and monitor the aurora, with full-time conjunctions between the satellites and the aurora. -
4.4 Atmospheres of Solar System Planets
4.4. ATMOSPHERES OF SOLAR SYSTEM PLANETS 87 4.4 Atmospheres of solar system planets For spectroscopic studies of planets one needs to understand the net emission of the radiation from the surface or the atmosphere. Radiative transfer in planetary atmosphere is therefore a very important topic for the analysis of solar system objects but also for direct observations of extra-solar planets. In this section we discuss some basic properties of planetary atmospheres. 4.4.1 Hydrostatic structure of atmospheres The planet structure equation from Section 3.2 apply also for planetary atmospheres. One can often make the following simplifications: – the atmosphere can be calculated in a plane-parallel geometry considering only a vertical or height dependence z, – the vertical dependence of the gravitational acceleration can often be neglected for the pressure range 10 bar – 0.01 bar and one can just use g(z)=g(z = 0) = g(R)= 2 g = GMP /RP . – the equation of state can be described by the ideal gas law ⇢kT µP P (⇢)= or ⇢(P )= , µ kT where µ is the mean particle mass (in [kg] or [g]), – a mean particle mass which is constant with height µ(z)=µ can often be used in a first approximation, – a temperature which is constant with height T (z)=T can often be used as first approximation. Pressure structure. The di↵erential equation for the pressure gradient is: dP (z) µ(z)P (z) = g(z)⇢(z)= g(z) dz − − kT(z) which yields the general solution: z 1/H (z)dz kT(z) P (z)=P e− 0 P with H (z)= .