Structure of Exoplanets SPECIAL FEATURE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT
N T Z 33854 C *?** IS81 1? JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I '>•*,' T COLLEGE OF ENGINEERING Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I Prepared Under Contract No. NGR 33-010-071 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by NASA-Cornell Doctoral Design Trainee Group (196T-TO) October 1971 College of Engineering Cornell University Ithaca, New York Table of Contents Volume I Preface Chapter I: The Planet Jupiter: A Brief Summary B 1-2 r. Mechanical Properties of the Planet Jupiter. P . T-fi r> 1-10 F T-lfi F T-lfi 0 1-29 H, 1-32 T 1-39 References ... p. I-k2 Chapter II: The Spacecraft Design and Mission Definition A. Introduction p. II-l B. Organizational Structure and the JOSE Mission p. II-l C. JOSE Components p. II-1* D. Proposed Configuration p. II-5 Bibliography and References p. 11-10 Chapter III: Mission Trajectories A. Interplanetary Trajectory Analysis .... p. III-l B. Jupiter Orbital Considerations p. III-6 Bibliography and References. p. 111-38 Chapter IV: Attitude Control A. Introduction and Summary . p. IV-1 B. Expected Disturbance Moments M in Interplanetary Space . p. IV-3 C. Radiation-Produced Impulse Results p. IV-12 D. Meteoroid-Produced Impulse Results p. IV-13 E. Inertia Wheel Analysis p. IV-15 F. Attitude System Tradeoff Analysis p. IV-19 G. Conclusion P. IV-21 References and Bibliography p. TV-26 Chapter V: Propulsion Subsystem A. Mission Requirements p. V-l B. Orbit Insertion Analysis p. -
Adaptive Multibody Gravity Assist Tours Design in Jovian System for the Ganymede Landing
TO THE ADAPTIVE MULTIBODY GRAVITY ASSIST TOURS DESIGN IN JOVIAN SYSTEM FOR THE GANYMEDE LANDING Grushevskii A.V.(1), Golubev Yu.F.(2), Koryanov V.V.(3), and Tuchin A.G.(4) (1)KIAM (Keldysh Institute of Applied Mathematics), Miusskaya sq., 4, Moscow, 125047, Russia, +7 495 333 8067, E-mail: [email protected] (2)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (3)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (4)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] Keywords: gravity assist, adaptive mission design, trajectory design, TID, phase beam Introduction Modern space missions inside Jovian system are not possible without multiple gravity assists (as well as in Saturnian system, etc.). The orbit design for real upcoming very complicated missions by NASA, ESA, RSA should be adaptive to mission parameters, such as: the time of Jovian system arrival, incomplete information about ephemeris of Galilean Moons and their gravitational fields, errors of flybys implementation, instrumentation deflections. Limited dynamic capabilities, taking place in case of maneuvering around Jupiter's moons, demand multiple encounters (about 15-30 times) for these purposes. Flexible algorithm of current mission scenarios synthesis (specially selected) and their operative transformation is required. Mission design is complicated due to requirements of the Ganymede Orbit Insertion (GOI) ("JUICE" ESA) and also Ganymede Landing implementation ("Laplas-P" RSA [1]) comparing to the ordinary early ―velocity gain" missions since ―Pioneers‖ and "Voyagers‖. Thus such scenario splits in two parts. Part 1(P1), as usually, would be used to reduce the spacecraft’s orbital energy with respect to Jupiter and set up the conditions for more frequent flybys. -
Our Planetary System (Chapter 7) Based on Chapter 7
Our Planetary System (Chapter 7) Based on Chapter 7 • This material will be useful for understanding Chapters 8, 9, 10, 11, and 12 on “Formation of the solar system”, “Planetary geology”, “Planetary atmospheres”, “Jovian planet systems”, and “Remnants of ice and rock” • Chapters 3 and 6 on “The orbits of the planets” and “Telescopes” will be useful for understanding this chapter Goals for Learning • How do planets rotate on their axes and orbit the Sun? • What are the planets made of? • What other classes of objects are there in the solar system? Orbits mostly lie in the same flat plane All planets go around the Sun in the same direction Most orbits are close to circular Not coincidences! Most planets rotate in the same “sense” as they orbit the Sun Coincidence? Planetary equators mostly lie in the same plane as their orbits Coincidence? • Interactive Figure: Orbital and Rotational Properties of the Planets Rotation and Orbits of Moons • Most moons (especially the larger ones) orbit in near-circular orbits in the same plane as the equator of their parent planet • Most moons rotate so that their equator is in the plane of their orbit • Most moons rotate in the same “sense” as their orbit around the parent planet • Everything is rotating/orbiting in the same direction A Brief Tour • Distance from Sun •Size •Mass • Composition • Temperature • Rings/Moons Sun 695000 km = 108 RE 333000 MEarth 98% Hydrogen and helium 99.9% total mass of solar system Surface = 5800K Much hotter inside Giant ball of gas Gravity => orbits Heat/light => weather -
Jupiter Mass
CESAR Science Case Jupiter Mass Calculating a planet’s mass from the motion of its moons Student’s Guide Mass of Jupiter 2 CESAR Science Case Table of Contents The Mass of Jupiter ........................................................................... ¡Error! Marcador no definido. Kepler’s Three Laws ...................................................................................................................................... 4 Activity 1: Properties of the Galilean Moons ................................................................................................. 6 Activity 2: Calculate the period of your favourite moon ................................................................................. 9 Activity 3: Calculate the orbital radius of your favourite moon .................................................................... 12 Activity 4: Calculate the Mass of Jupiter ..................................................................................................... 15 Additional Activity: Predict a Transit ............................................................................................................ 16 To know more… .......................................................................................................................... 19 Links ............................................................................................................................................ 19 Mass of Jupiter 3 CESAR Science Case Background Kepler’s Three Laws The three Kepler’s Laws, published between -
The Effect of Jupiter\'S Mass Growth on Satellite Capture
A&A 414, 727–734 (2004) Astronomy DOI: 10.1051/0004-6361:20031645 & c ESO 2004 Astrophysics The effect of Jupiter’s mass growth on satellite capture Retrograde case E. Vieira Neto1;?,O.C.Winter1, and T. Yokoyama2 1 Grupo de Dinˆamica Orbital & Planetologia, UNESP, CP 205 CEP 12.516-410 Guaratinguet´a, SP, Brazil e-mail: [email protected] 2 Universidade Estadual Paulista, IGCE, DEMAC, CP 178 CEP 13.500-970 Rio Claro, SP, Brazil e-mail: [email protected] Received 13 June 2003 / Accepted 12 September 2003 Abstract. Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L1 indicates that mass accretion provides an increase of the confinement region (delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M . We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R a 400 R and 0 e 0:5. The results give Jupiter’s mass at the X moment when the particle escapes from the planet. -
Arxiv:1904.05358V1 [Astro-Ph.EP] 10 Apr 2019
Draft version April 12, 2019 Typeset using LATEX default style in AASTeX62 The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10{100 AU Eric L. Nielsen,1 Robert J. De Rosa,1 Bruce Macintosh,1 Jason J. Wang,2, 3, ∗ Jean-Baptiste Ruffio,1 Eugene Chiang,3 Mark S. Marley,4 Didier Saumon,5 Dmitry Savransky,6 S. Mark Ammons,7 Vanessa P. Bailey,8 Travis Barman,9 Celia´ Blain,10 Joanna Bulger,11 Jeffrey Chilcote,1, 12 Tara Cotten,13 Ian Czekala,3, 1, y Rene Doyon,14 Gaspard Duchene^ ,3, 15 Thomas M. Esposito,3 Daniel Fabrycky,16 Michael P. Fitzgerald,17 Katherine B. Follette,18 Jonathan J. Fortney,19 Benjamin L. Gerard,20, 10 Stephen J. Goodsell,21 James R. Graham,3 Alexandra Z. Greenbaum,22 Pascale Hibon,23 Sasha Hinkley,24 Lea A. Hirsch,1 Justin Hom,25 Li-Wei Hung,26 Rebekah Ilene Dawson,27 Patrick Ingraham,28 Paul Kalas,3, 29 Quinn Konopacky,30 James E. Larkin,17 Eve J. Lee,31 Jonathan W. Lin,3 Jer´ ome^ Maire,30 Franck Marchis,29 Christian Marois,10, 20 Stanimir Metchev,32, 33 Maxwell A. Millar-Blanchaer,8, 34 Katie M. Morzinski,35 Rebecca Oppenheimer,36 David Palmer,7 Jennifer Patience,25 Marshall Perrin,37 Lisa Poyneer,7 Laurent Pueyo,37 Roman R. Rafikov,38 Abhijith Rajan,37 Julien Rameau,14 Fredrik T. Rantakyro¨,39 Bin Ren,40 Adam C. Schneider,25 Anand Sivaramakrishnan,37 Inseok Song,13 Remi Soummer,37 Melisa Tallis,1 Sandrine Thomas,28 Kimberly Ward-Duong,25 and Schuyler Wolff41 1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 2Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 3Department of Astronomy, University of California, Berkeley, CA 94720, USA 4NASA Ames Research Center, Mountain View, CA 94035, USA 5Los Alamos National Laboratory, P.O. -
Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis. -
Cold Plasma Diagnostics in the Jovian System
341 COLD PLASMA DIAGNOSTICS IN THE JOVIAN SYSTEM: BRIEF SCIENTIFIC CASE AND INSTRUMENTATION OVERVIEW J.-E. Wahlund(1), L. G. Blomberg(2), M. Morooka(1), M. André(1), A.I. Eriksson(1), J.A. Cumnock(2,3), G.T. Marklund(2), P.-A. Lindqvist(2) (1)Swedish Institute of Space Physics, SE-751 21 Uppsala, Sweden, E-mail: [email protected], [email protected], mats.andré@irfu.se, [email protected] (2)Alfvén Laboratory, Royal Institute of Technology, SE-100 44 Stockholm, Sweden, E-mail: [email protected], [email protected], [email protected], per- [email protected] (3)also at Center for Space Sciences, University of Texas at Dallas, U.S.A. ABSTRACT times for their atmospheres are of the order of a few The Jovian magnetosphere equatorial region is filled days at most. These atmospheres can therefore rightly with cold dense plasma that in a broad sense co-rotate with its magnetic field. The volcanic moon Io, which be termed exospheres, and their corresponding ionized expels sodium, sulphur and oxygen containing species, parts can be termed exo-ionospheres. dominates as a source for this cold plasma. The three Observations indicate that the exospheres of the three icy Galilean moons (Callisto, Ganymede, and Europa) icy Galilean moons (Europa, Ganymede and Callisto) also contribute with water group and oxygen ions. are oxygen rich [1, 2]. Several authors have also All the Galilean moons have thin atmospheres with modelled these exospheres [3, 4, 5], and the oxygen was residence times of a few days at most. -
When Extrasolar Planets Transit Their Parent Stars 701
Charbonneau et al.: When Extrasolar Planets Transit Their Parent Stars 701 When Extrasolar Planets Transit Their Parent Stars David Charbonneau Harvard-Smithsonian Center for Astrophysics Timothy M. Brown High Altitude Observatory Adam Burrows University of Arizona Greg Laughlin University of California, Santa Cruz When extrasolar planets are observed to transit their parent stars, we are granted unprece- dented access to their physical properties. It is only for transiting planets that we are permitted direct estimates of the planetary masses and radii, which provide the fundamental constraints on models of their physical structure. In particular, precise determination of the radius may indicate the presence (or absence) of a core of solid material, which in turn would speak to the canonical formation model of gas accretion onto a core of ice and rock embedded in a proto- planetary disk. Furthermore, the radii of planets in close proximity to their stars are affected by tidal effects and the intense stellar radiation. As a result, some of these “hot Jupiters” are significantly larger than Jupiter in radius. Precision follow-up studies of such objects (notably with the spacebased platforms of the Hubble and Spitzer Space Telescopes) have enabled direct observation of their transmission spectra and emitted radiation. These data provide the first observational constraints on atmospheric models of these extrasolar gas giants, and permit a direct comparison with the gas giants of the solar system. Despite significant observational challenges, numerous transit surveys and quick-look radial velocity surveys are active, and promise to deliver an ever-increasing number of these precious objects. The detection of tran- sits of short-period Neptune-sized objects, whose existence was recently uncovered by the radial- velocity surveys, is eagerly anticipated. -
A Search for Planetary Transits of the Star HD 187123 by Spot Filter CCD Differential Photometry
A Search for Planetary Transits of the Star HD 187123 by Spot Filter CCD Differential Photometry T. Castellano 1 NASA Ames Fl_esearch Center, MS 245-6, Moffett Field, CA 94035 tcastellano_mail.arc.nasa.gov Received ; accepted SubInitted to Publications of tile Astronomical Society of the Pacific _Also at Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 _ ABSTRACT A novel method for performing high precision, time series CCD differential photometry of bright stars using a spot filter, is demonstrated. Results for sev- eral nights of observing of tile 51 Pegasi b-type planet bearing star HD 187123 are presented. Photometric precision of 0.0015 - 0.0023 magnitudes is achieved. No transits are observed at the epochs predicted from the radial velocity obser- vations. If the planet orbiting HD 187123 at, 0.0415 AU is an inflated Jupiter similar in radius to HD 209458b it would have been detected at the > 6o level if tile orbital inclination is near 90 degrees and at the > 3or level if the orbital inclination is as small as 82.7 degrees. Subject headings: stars: planetary systems techniques:photometric 1. Introduction More than two dozen extrasolar planets have been discovered around nearby stars by measuring their Keplerian radial velocity Doppler shifts (see, for example, Marcy et al. (2000)). Two radial velocity teams recently discovered a planet orbiting tile star HD 209458 (Henry et al. 1999; Mazeh et al. 2000). The planet has M v sin i = 0.62 Mj (1 ._l.j = 1 Jupiter mass = 2 x 10 a° grams) and a = 0.046 AU, with an assumed eccentricity of zero but consistent with 0.04 (Henry et al. -
Worlds Apart - Finding Exoplanets
Worlds Apart - Finding Exoplanets Illustrated Video Credit: NASA, JPL-Caltech, T. Pyle; Acknowledgement: djxatlanta Dr. Billy Teets Vanderbilt University Dyer Observatory Osher Lifelong Learning Institute Thursday, November 5, 2020 Outline • A bit of info and history about planet formation theory. • A discussion of the main exoplanet detection techniques including some of the missions and telescopes that are searching the skies. • A few examples of “notable” results. Evolution of our Thinking of the Solar System • First “accepted models” were geocentric – Ptolemy • Copernicus – heliocentric solar system • By 1800s, heliocentric model widely accepted in scientific community • 1755 – Immanuel Kant hypothesizes clouds of gas and dust • 1796 – Kant and P.-S. LaPlace both put forward the Solar Nebula Disk Theory • Today – if Solar System formed from an interstellar cloud, maybe other clouds formed planets elsewhere in the universe. Retrograde Motion - Mars Image Credits: Tunc Tezel Retrograde Motion as Explained by Ptolemy To explain retrograde, the concept of the epicycle was introduced. A planet would move on the epicycle (the smaller circle) as the epicycle went around the Earth on the deferent (the larger circle). The planet would appear to shift back and forth among the background stars. Evolution of our Thinking of the Solar System • First “accepted models” were geocentric – Ptolemy • Copernicus – heliocentric solar system • By 1800s, heliocentric model widely accepted in scientific community • 1755 – Immanuel Kant hypothesizes clouds of gas and dust • 1796 – Kant and P.-S. LaPlace both put forward the Solar Nebula Disk Theory • Today – if Solar System formed from an interstellar cloud, maybe other clouds formed planets elsewhere in the universe. -
EXPLORATION of JUPITER. F. Bagenal, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder CO 80302 ([email protected])
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1352.pdf EXPLORATION OF JUPITER. F. Bagenal, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder CO 80302 ([email protected]) Introduction: Jupiter reigns supreme amongst plan- zones, hinting at convective motions but images were ets in our solar system: the largest, the most massive, the insufficient to allow tracking of features. fastest rotating, the strongest magnetic field, the greatest • Infrared emissions from Jupiter’s nightside com- number of satellites, and its moon Europa is the most pared to the dayside, confirming that the planet radiates likely place to find extraterrestrial life. Moreover, we 1.9 times the heat received from the Sun with the poles now know of thousands of Jupiter-type planets that orbit being close to equatorial temperatures. other stars. Our understanding of the various compo- • Accurately tracking of the Doppler shift of the nents of the Jupiter system has increased immensely spacecraft’s radio signal refined the gravitational field with recent spacecraft missions. But the knowledge that of Jupiter, constraining models of the deep interior. we are studying just the local example of what may be • Similarly, the masses of the Galilean satellites ubiquitous throughout the universe has changed our per- were corrected by up to 10%, establishing a decline in spective and studies of the jovian system have ramifica- their density with distance from Jupiter. tions that extend well beyond our solar system. • Magnetic field measurements confirmed the strong The purpose of this talk is to document our scientific magnetic field of Jupiter, putting tighter constraints on understanding of the jovian system after six spacecraft the higher order components.