PHYS133 – Lab 4 the Revolution of the Moons of Jupiter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. -
Jupiter Mass
CESAR Science Case Jupiter Mass Calculating a planet’s mass from the motion of its moons Student’s Guide Mass of Jupiter 2 CESAR Science Case Table of Contents The Mass of Jupiter ........................................................................... ¡Error! Marcador no definido. Kepler’s Three Laws ...................................................................................................................................... 4 Activity 1: Properties of the Galilean Moons ................................................................................................. 6 Activity 2: Calculate the period of your favourite moon ................................................................................. 9 Activity 3: Calculate the orbital radius of your favourite moon .................................................................... 12 Activity 4: Calculate the Mass of Jupiter ..................................................................................................... 15 Additional Activity: Predict a Transit ............................................................................................................ 16 To know more… .......................................................................................................................... 19 Links ............................................................................................................................................ 19 Mass of Jupiter 3 CESAR Science Case Background Kepler’s Three Laws The three Kepler’s Laws, published between -
Tidal Detachment and Evaporation Following an Exoplanet-Star Collision
MNRAS 000, 000–000 (0000) Preprint 24 June 2019 Compiled using MNRAS LATEX style file v3.0 Orphaned Exomoons: Tidal Detachment and Evaporation Following an Exoplanet-Star Collision Miguel Martinez1, Nicholas C. Stone1;2;3, Brian D. Metzger1 1Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA 2Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel 3Department of Astronomy, University of Maryland, College Park, MD 20742, USA 24 June 2019 ABSTRACT Gravitational perturbations on an exoplanet from a massive outer body, such as the Kozai- Lidov mechanism, can pump the exoplanet’s eccentricity up to values that will destroy it via a collision or strong interaction with its parent star. During the final stages of this process, any exomoons orbiting the exoplanet will be detached by the star’s tidal force and placed into orbit around the star. Using ensembles of three and four-body simulations, we demonstrate that while most of these detached bodies either collide with their star or are ejected from the system, a substantial fraction, ∼ 10%, of such "orphaned" exomoons (with initial properties similar to those of the Galilean satellites in our own solar system) will outlive their parent exoplanet. The detached exomoons generally orbit inside the ice line, so that strong radiative heating will evaporate any volatile-rich layers, producing a strong outgassing of gas and dust, analogous to a comet’s perihelion passage. Small dust grains ejected from the exomoon may help generate an opaque cloud surrounding the orbiting body but are quickly removed by radiation blow-out. -
Arxiv:1209.5996V1 [Astro-Ph.EP] 26 Sep 2012 1.1
, 1{28 Is the Solar System stable ? Jacques Laskar ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France [email protected] R´esum´e. Since the formulation of the problem by Newton, and during three centuries, astrono- mers and mathematicians have sought to demonstrate the stability of the Solar System. Thanks to the numerical experiments of the last two decades, we know now that the motion of the pla- nets in the Solar System is chaotic, which prohibits any accurate prediction of their trajectories beyond a few tens of millions of years. The recent simulations even show that planetary colli- sions or ejections are possible on a period of less than 5 billion years, before the end of the life of the Sun. 1. Historical introduction 1 Despite the fundamental results of Henri Poincar´eabout the non-integrability of the three-body problem in the late 19th century, the discovery of the non-regularity of the Solar System's motion is very recent. It indeed required the possibility of calculating the trajectories of the planets with a realistic model of the Solar System over very long periods of time, corresponding to the age of the Solar System. This was only made possible in the past few years. Until then, and this for three centuries, the efforts of astronomers and mathematicians were devoted to demonstrate the stability of the Solar System. arXiv:1209.5996v1 [astro-ph.EP] 26 Sep 2012 1.1. Solar System stability The problem of the Solar System stability dates back to Newton's statement concerning the law of gravitation. -
Prelab 4: Revolution of the Moons of Jupiter
Name: Section: Date: Prelab 4: Revolution of the Moons of Jupiter Many of the parameters astronomers study cannot be directly measured; rather, they are inferred from properties or other observations of the bodies themselves. The mass of a celestial object is one such parameter|after all, how would one weigh something suspended in mid-air? In 1543, Nicolaus Copernicus hypothesized that the planets revolve in circular orbits around the sun. His contemporary Tycho Brahe, famous for his observations, carefully charted the locations of the planets and hundreds of stars over a period of twenty years, using a sextant and a compass. These observations were eventually used by Johannes Kepler, a student of Brahe's, to deduce three empirical mathematical laws governing the orbit of one object around another. Kepler's Third Law is the one that applies to this lab. In the early 17th century, with the recent invention of the telescope, Galileo was able to extend astronomical observations beyond what was available to the naked eye. He discovered four moons orbiting Jupiter and made exhaustive studies of this system. Galileo's work is of particular interest, not only for its pioneering observations, but because Jupiter and the four Galilean moons (as they came to be called) can be viewed as a miniature version of the larger Solar System in which they lie. Furthermore, Jupiter provided clear evidence that Copernicus's heliocentric model of the Solar System was physically possible; it is largely from these scientists' work that the modern study of Astronomy was born. The purpose of this lab is to determine the mass of Jupiter by observing the motion of the four Galilean moons: Io, Europa, Ganymede, and Callisto. -
Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966 Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D. -
The Jovian System: a Scale Model Middle Grades
The Jovian System: A Scale Model Middle grades Lesson Summary Teaching Time: One 45-minute period This exercise will give students an idea of the size and scale of the Jovian system, and also illustrate Materials the Galileo spacecraft's arrival day trajectory. To share with the whole class: • Materials for scale-model moons (optional, may Prior Knowledge & Skills include play-dough or cardboard) Characteristics of the Jupiter system • • Rope marked with distance units • Discovery of Jupiter’s Galilean satellites • Copy of arrival day geometry figure • The Galileo probe mission AAAS Science Benchmarks Advanced Planning Preparation Time: 30 minutes The Physical Setting 1. Decide whether to use inanimate objects or The Universe students to represent the moons Common Themes 2. If using objects, gather materials Scale 3. Mark off units on rope 4. Review lesson plan NSES Science Standards • Earth and space science: Earth in the Solar System • Science and technology: Understandings about science and technology NCTM Mathematics Standards • Number and Operations: Compute fluently and make reasonable estimates Source: Project Galileo, NASA/JPL The Jovian System: A Scale Model Objectives: This exercise will give students an idea of the size and scale of the Jovian system, and also illustrate the Galileo spacecraft's arrival day trajectory. 1) Set the Stage Before starting your students on this activity, give them at least some background on Jupiter and the Galileo mission: • Jupiter's mass is more than twice that of all the other planets, moons, comets, asteroids and dust in the solar system combined. • Jupiter is looked on as a "mini solar system" because it resembles the solar system in miniature-for example, it has many moons (resembling the Sun's array of planets), and it has a huge magnetosphere, or volume of space where Jupiter's magnetic field pushes away that of the Sun. -
Activity Book Level 4
Space Place Education Team Activity booklet Level 4 This booklet contains: Teacher’s notes for Level 4 Level 4 assessment points Classroom activities Curriculum links Classroom Activities: Use these flexible activities to develop students awareness of abstract scientific concepts. Survival on the Moon Solar System Scale Model How Can We Navigate by the Sky? Seeing Clearly with Binoculars How to take Astronomical Measurements How do we Measure the Brightness of Stars and Planets? Curriculum Links: Use these ideas to link this science topic with Literacy, Mathematics and Craft sessions. Notes for Teachers Level 4 includes Exploring the Solar System, Telescopes and Hunting for Asteroids. These cover more about how seasons happen and if this could happen on other objects in space, features and affects of the Sun and builds on the knowledge of our galaxy and beyond as well as how to find asteroids. Our Solar System The Solar System is made up of the Sun and its planetary system of eight planets, their moons, and other non-stellar objects like comets and asteroids. It formed approximately 4.6 billion years ago from the gravitational collapse of a massive molecular cloud. Most of the System's mass is in the Sun, with the rest of the remaining mass mostly contained within Jupiter. The four smaller inner planets, Mercury, Venus, Earth and Mars, are also called terrestrial planets; are primarily made of metal and rock. The four outer planets, called the gas giants, are significantly more massive than the terrestrials. The two largest, Jupiter and Saturn, are made mainly of hydrogen and helium. -
Lecture 28: the Galilean Moons of Jupiter
Lecture 28: The Galilean Moons of Jupiter Lecture 28 The Galilean Moons of Jupiter Astronomy 141 – Winter 2012 This lecture is about the Galilean Moons of Jupiter. The Galilean moons of Jupiter are heated by tides from Jupiter – closer moons are hotter. Ganymede and Callisto are old, geologically dead worlds: mostly ice mantles over rocky cores. Innermost Io is tidally melted inside, making it the most volcanically active world in the Solar System. Europa may have liquid water oceans beneath the ice, making it the most promising place to search for life. The Galilean Moons of Jupiter Io Europa Ganymede Callisto (3642 km) (3130 km) (5262 km) (4806 km) Moon (3474 km) Astronomy 141 - Winter 2012 1 Lecture 28: The Galilean Moons of Jupiter The Galilean Moons all orbit in the same direction around Jupiter. The inner 3 are on resonant orbits. Orbital Periods: Io: 1.8 days Europa Europa: 3.6 days Ganymede (2 times Io's period) Ganymede: 7.2 days Callisto (4 times Io's period) Io Callisto: 16.7 days Innermost are strongly affected by tides from Jupiter Liquid H2O @ 1atm Cold Interior Ganymede & Callisto are mixed ice & rock, low- density moons. Mean densities of 1.9 & 1.8 g/cc, respectively Deep ice mantles over rocky/icy cores. Ganymede Old, heavily cratered surfaces They lack internal heat and Callisto are geologically inactive. Astronomy 141 - Winter 2012 2 Lecture 28: The Galilean Moons of Jupiter In the terrestrial planets, interior heat is determined by the planet’s size. Large Earth & Venus have hot interiors: Smaller Mercury, Moon & Mars have cold interiors. -
Magnetic Fields of the Satellites of Jupiter and Saturn
Space Sci Rev DOI 10.1007/s11214-009-9507-8 Magnetic Fields of the Satellites of Jupiter and Saturn Xianzhe Jia · Margaret G. Kivelson · Krishan K. Khurana · Raymond J. Walker Received: 18 March 2009 / Accepted: 3 April 2009 © Springer Science+Business Media B.V. 2009 Abstract This paper reviews the present state of knowledge about the magnetic fields and the plasma interactions associated with the major satellites of Jupiter and Saturn. As re- vealed by the data from a number of spacecraft in the two planetary systems, the mag- netic properties of the Jovian and Saturnian satellites are extremely diverse. As the only case of a strongly magnetized moon, Ganymede possesses an intrinsic magnetic field that forms a mini-magnetosphere surrounding the moon. Moons that contain interior regions of high electrical conductivity, such as Europa and Callisto, generate induced magnetic fields through electromagnetic induction in response to time-varying external fields. Moons that are non-magnetized also can generate magnetic field perturbations through plasma interac- tions if they possess substantial neutral sources. Unmagnetized moons that lack significant sources of neutrals act as absorbing obstacles to the ambient plasma flow and appear to generate field perturbations mainly in their wake regions. Because the magnetic field in the vicinity of the moons contains contributions from the inevitable electromagnetic interactions between these satellites and the ubiquitous plasma that flows onto them, our knowledge of the magnetic fields intrinsic to these satellites relies heavily on our understanding of the plasma interactions with them. Keywords Magnetic field · Plasma · Moon · Jupiter · Saturn · Magnetosphere 1 Introduction Satellites of the two giant planets, Jupiter and Saturn, exhibit great diversity in their mag- netic properties. -
RESONANT REMOVAL of EXOMOONS DURING PLANETARY MIGRATION Christopher Spalding1, Konstantin Batygin1, and Fred C
The Astrophysical Journal, 817:18 (13pp), 2016 January 20 doi:10.3847/0004-637X/817/1/18 © 2016. The American Astronomical Society. All rights reserved. RESONANT REMOVAL OF EXOMOONS DURING PLANETARY MIGRATION Christopher Spalding1, Konstantin Batygin1, and Fred C. Adams2,3 1 Division of Geological and Planetary Sciences California Institute of Technology, Pasadena, CA 91125, USA 2 Physics Department, University of Michigan, Ann Arbor, MI 48109, USA 3 Astronomy Department, University of Michigan, Ann Arbor, MI 48109, USA Received 2015 October 2; accepted 2015 November 30; published 2016 January 19 ABSTRACT Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star’s habitable zone formed farther out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called evection resonance.Within this resonance, the lunar orbit’s eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about ∼10 planetary radii are susceptible to this mechanism, with the exact number dependent on the planetary mass, oblateness, and physical size. Whether moons survive or not is critically related to where the planet began its inward migration, as well as the character of interlunar perturbations. -
Rest of the Solar System” As We Have Covered It in MMM Through the Years
As The Moon, Mars, and Asteroids each have their own dedicated theme issues, this one is about the “rest of the Solar System” as we have covered it in MMM through the years. Not yet having ventured beyond the Moon, and not yet having begun to develop and use space resources, these articles are speculative, but we trust, well-grounded and eventually feasible. Included are articles about the inner “terrestrial” planets: Mercury and Venus. As the gas giants Jupiter, Saturn, Uranus, and Neptune are not in general human targets in themselves, most articles about destinations in the outer system deal with major satellites: Jupiter’s Io, Europa, Ganymede, and Callisto. Saturn’s Titan and Iapetus, Neptune’s Triton. We also include past articles on “Space Settlements.” Europa with its ice-covered global ocean has fascinated many - will we one day have a base there? Will some of our descendants one day live in space, not on planetary surfaces? Or, above Venus’ clouds? CHRONOLOGICAL INDEX; MMM THEMES: OUR SOLAR SYSTEM MMM # 11 - Space Oases & Lunar Culture: Space Settlement Quiz Space Oases: Part 1 First Locations; Part 2: Internal Bearings Part 3: the Moon, and Diferent Drums MMM #12 Space Oases Pioneers Quiz; Space Oases Part 4: Static Design Traps Space Oases Part 5: A Biodynamic Masterplan: The Triple Helix MMM #13 Space Oases Artificial Gravity Quiz Space Oases Part 6: Baby Steps with Artificial Gravity MMM #37 Should the Sun have a Name? MMM #56 Naming the Seas of Space MMM #57 Space Colonies: Re-dreaming and Redrafting the Vision: Xities in