Structure of Exoplanets

Total Page:16

File Type:pdf, Size:1020Kb

Structure of Exoplanets Structure of exoplanets David S. Spiegela,1, Jonathan J. Fortneyb, and Christophe Sotinc aSchool of Natural Sciences, Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540; bDepartment of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064; and cJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board December 4, 2013 (received for review July 24, 2013) The hundreds of exoplanets that have been discovered in the entire radius of the planet in which opacities are high enough past two decades offer a new perspective on planetary structure. that heat must be transported via convection; this region is Instead of being the archetypal examples of planets, those of our presumably well-mixed in chemical composition and specific solar system are merely possible outcomes of planetary system entropy. Some gas giants have heavy-element cores at their centers, formation and evolution, and conceivably not even especially although it is not known whether all such planets have cores. common outcomes (although this remains an open question). Gas-giant planets of roughly Jupiter’s mass occupy a special Here, we review the diverse range of interior structures that are region of the mass/radius plane. At low masses, liquid or rocky both known and speculated to exist in exoplanetary systems—from planetary objects have roughly constant density and suffer mostly degenerate objects that are more than 10× as massive as little compression from the overlying material. In such cases, 1=3 Jupiter, to intermediate-mass Neptune-like objects with large cores Rp ∝ Mp , where Rp and Mp are the planet’s radius mass. At high and moderate hydrogen/helium envelopes, to rocky objects with masses, for objects that have had time to cool, electron de- roughly the mass of Earth. generacy pressure becomes significant, and the mass/radius re- −1=3 lation changes such that the radius scales as Rp ∝ MP . Note gas giants | hot Jupiters | super-Earths that the H/He comp. curve in Fig. 1 does not display this be- havior at low masses, because this curve is calculated for highly ow can we, from many light years away, learn about the irradiated objects that are a mere 0.045 a.u. from their Sun-like Hinterior structure of exoplanets? Radial velocity observa- star, which prevents them from reaching their zero-temperature tions provide minimum masses of exoplanets; transit observa- radius in 3 billion years (3 Gyr). For cold spheres of H/He, it has tions provide planet radii, and taken singly, neither is especially long been appreciated that the maximum in the mass/radius re- informative about planet structure. However, when we know lation occurs near 4× Jupiter’s mass (9, 10), with a broad peak at both the mass and the radius of a planet we may learn much just over 1 RJ (where RJ is Jupiter’s radius), extending from ∼1/ more about the interior structure. The Kepler satellite (1, 2) is 10th of Jupiter’s mass to ∼100× Jupiter’s mass. For a planet to be a space-based, transit-detecting mission that, as of early 2013, smaller than the H/He minimum radius requires the presence of has identified ∼100 planets and ∼3,000 planet candidates, of a significant heavy-element component, in the form of a core in which the vast majority are almost certainly real (3, 4). Thanks to the object’s center or high-metallicity material well mixed Kepler and ground-based efforts such as the Hungarian Auto- throughout the envelope (where “metals” is taken to mean ele- mated Telescope (HAT) and Super Wide Angle Search for ments heavier than helium). For a planet to be larger than the Planets (SuperWASP) transit surveys (5, 6), there are now more zero-temperature radius (∼1 RJ) requires it to have a high enough than 200 known planets with measured masses and radii, span- temperature that pressure from ions becomes a significant frac- ning a range of irradiation conditions. tion of that due to electrons. Fig. 1 portrays how planet radii relate to masses and incident Before the discovery of transiting planets, it was assumed that fluxes, among the known planets (including the solar system approximately billion-year-old planets—even ones on close-in Kepler Kepler planets) and the candidates [ objects of interest orbits around their stars (so-called “hot Jupiters,” with orbits (KOI)] (7, 8). Several trends are apparent in the data: planets with the largest radii tend to be near Jupiter’s mass and highly Significance irradiated, and Kepler seems to find low-radius planets at a wide range of orbital separations, including some small planets that are extremely highly irradiated. Planets around other stars, or exoplanets, are now known to In the remainder of this paper, we discuss what is known of the be common in our galaxy. Exoplanets span a much wider range structure of the most massive planets (gas giants), of intermediate- of physical conditions than the planets in our solar system, and mass planets (Neptunes), and of low-mass planets (terrestrial include extremely puffy gas giants to compact rocky planets and ocean planets). We conclude by considering how our that can have densities as high as that of iron. The diversity of knowledge of exoplanet structure might improve over course exoplanets allows us to place the planets of our solar system in of the next decade. a broader perspective, and invites further research in the na- scent field of comparative exoplanetology. Here we review the Gas Giants continuum of detected planets, from the gas giants, which are Jupiter and Saturn are essentially giant spheres of hydrogen and composed mostly of hydrogen, to smaller worlds where water helium (H/He) with smaller contributions from heavier elements may provide more of their mass, to rock-iron worlds in some and complex molecules. Many of the known exoplanets have ways similar to Earth. similar mass and similar radius to our local gas giants, and Author contributions: D.S.S., J.J.F., and C.S. designed research, performed research, con- probably have roughly similar bulk structure. The atmosphere, or tributed new reagents/analytic tools, analyzed data, and wrote the paper. weather layer, of such an object is a thin outer region that is of The authors declare no conflict of interest. roughly the same relative depth as the skin of a grapefruit, and is – This article is a PNAS Direct Submission. A.S.B. is a guest editor invited by the Editorial typically defined as the region above the radiative convective Board. boundary,* which can be at pressures on the order of kilobars 1To whom correspondence should be addressed. E-mail: [email protected]. (kbar) for the most strongly irradiated planets and which occurs – in the vicinity of ∼1 kbar in gas giants subjected to lower irra- *The radiative convective boundary is the region bounding the convective interior of – a planet in which heat transport is dominated by convective eddies. This boundary diation, such as Jupiter and Saturn. Below the radiative con- occurs essentially where the vertical temperature gradient becomes subadiabatic and vective boundary, there is a deep envelope extending almost the therefore stable against convection. 12622–12627 | PNAS | September 2, 2014 | vol. 111 | no. 35 www.pnas.org/cgi/doi/10.1073/pnas.1304206111 Downloaded by guest on September 26, 2021 A 2.5 B 2.5 SPECIAL FEATURE 3e+10 25.00 1e+10 Flux (erg Radius vs. Mass 4.600 Mass (M Radius vs. Flux 3e+09 2 1e+09 2 0.855 KOI 3e+08 Solar System 0.157 Solar System / 1e+08 Jupiter cm Planet Planet 3e+07 0.029 ) ) 1.5 2 1.5 1e+07 / s) 0.005 ) 3e+06 Jupiter Jupiter 1e+06 0.001 R[M] for H/He comp. J 1 J 1 R (R R (R 3Gyr old, 0.045AU from Sun S S 0.5 0.5 R[M] for 100% water comp. UN R[M] for Earth−like comp. N U R[M] for 100% iron comp. V E M E V 0 0 M 3 4 5 6 7 8 9 10 11 12 0.001 0.01 0.1 1 10 10 10 10 10 10 10 10 10 10 10 M (M ) Jupiter F (erg/cm2/s) Fig. 1. Radius vs. mass (A) and radius vs. incident-irradiating flux (B) for the confirmed exoplanets, the Kepler candidate planets (KOI), and the planets of our solar system. The ∼200 confirmed planets in this figure are represented with filled large circles; KOI (B) are represented with small white circles; solar system planets are represented with large pentagrams. For comparison, A shows the radius vs. mass relationship for Earth-like composition, which precisely matches the (mass, radius) values for Venus and Earth (26). Planets span masses from less than Earth’stotensoftimesJupiter’s, radii from less than Earth’stomorethandouble − − Jupiter’s, and incident fluxes from nearly zero—in the case HR 8799b, at ∼70 a.u. (27)—to nearly 1012 erg·cm 2·s 1. The planets with the largest radii tend to be close to Jupiter’s mass and highly irradiated. lasting ∼1 week or less)—would have cooled and shrunk to near essentially impossible to learn whether the extremely inflated their asymptotic radius (11, 12). However, the discovery of transiting planets have cores (although, if they do, the larger the core mass, ASTRONOMY hot Jupiters such as HD 209458b (13), with its &1.3 RJ radius, the greater the additional power that is required to explain their suggested that some planets are a good deal puffier than expected radii).
Recommended publications
  • Planetas Extrasolares
    Local Extrasolar Planets Universidad Andres Bello ESO Vitacura 4 June 2015 Foto: Dante Joyce Minniti Pullen The big picture 1. Increase human resources and networks for national Astronomy 2. Develop new areas of research and do quality science 3. Promote science in Chile Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Wolfgang Gieren Maria Teresa Ruiz Grzegorz Pietrzynski Dante Minniti School on Extrasolar Planets and Brown Dwarfs Santiago, 2003 Invited Lecturers: Michel Mayor, Scott Tremaine, Gill Knapp, France Allard Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti It is all about time... Telescope time is the most precious... Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Wolfgang Gieren Maria Teresa Ruiz Grzegorz Pietrzynski Dante Minniti The first exoplanet for us: M. Konacki, G. Torres, D. D. Sasselov, G. Pietrzynski, A. Udalski, S. Jha, M. T. Ruiz, W. Gieren, & D. Minniti, “A Transiting Extrasolar Giant Planet Around the Star OGLE-TR-113'', 2004, ApJ, 609, L37” Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Paul Butler Debra Fischer Dante Minniti The First Planets from the N2K Consortium Fischer et al., ``A Hot Saturn Planet Orbiting HD 88133, from the N2K Consortium", 2005, The Astrophysical Journal, 620, 481 Sato, et al., ``The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core", 2005, The Astrophysical Journal, 633, 465 Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT
    N T Z 33854 C *?** IS81 1? JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I '>•*,' T COLLEGE OF ENGINEERING Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I Prepared Under Contract No. NGR 33-010-071 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by NASA-Cornell Doctoral Design Trainee Group (196T-TO) October 1971 College of Engineering Cornell University Ithaca, New York Table of Contents Volume I Preface Chapter I: The Planet Jupiter: A Brief Summary B 1-2 r. Mechanical Properties of the Planet Jupiter. P . T-fi r> 1-10 F T-lfi F T-lfi 0 1-29 H, 1-32 T 1-39 References ... p. I-k2 Chapter II: The Spacecraft Design and Mission Definition A. Introduction p. II-l B. Organizational Structure and the JOSE Mission p. II-l C. JOSE Components p. II-1* D. Proposed Configuration p. II-5 Bibliography and References p. 11-10 Chapter III: Mission Trajectories A. Interplanetary Trajectory Analysis .... p. III-l B. Jupiter Orbital Considerations p. III-6 Bibliography and References. p. 111-38 Chapter IV: Attitude Control A. Introduction and Summary . p. IV-1 B. Expected Disturbance Moments M in Interplanetary Space . p. IV-3 C. Radiation-Produced Impulse Results p. IV-12 D. Meteoroid-Produced Impulse Results p. IV-13 E. Inertia Wheel Analysis p. IV-15 F. Attitude System Tradeoff Analysis p. IV-19 G. Conclusion P. IV-21 References and Bibliography p. TV-26 Chapter V: Propulsion Subsystem A. Mission Requirements p. V-l B. Orbit Insertion Analysis p.
    [Show full text]
  • A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System
    Space Sci Rev (2020) 216:100 https://doi.org/10.1007/s11214-020-00719-1 A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System Martin Turbet1 · Emeline Bolmont1 · Vincent Bourrier1 · Brice-Olivier Demory2 · Jérémy Leconte3 · James Owen4 · Eric T. Wolf5 Received: 14 January 2020 / Accepted: 4 July 2020 / Published online: 23 July 2020 © The Author(s) 2020 Abstract TRAPPIST-1 is a fantastic nearby (∼39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable system of po- tentially habitable planets known to exist. Since the announcement of the discovery of the TRAPPIST-1 planetary system in 2016, a growing number of techniques and approaches have been used and proposed to characterize its true nature. Here we have compiled a state- of-the-art overview of all the observational and theoretical constraints that have been ob- tained so far using these techniques and approaches. The goal is to get a better understanding of whether or not TRAPPIST-1 planets can have atmospheres, and if so, what they are made of. For this, we surveyed the literature on TRAPPIST-1 about topics as broad as irradiation environment, planet formation and migration, orbital stability, effects of tides and Transit Timing Variations, transit observations, stellar contamination, density measurements, and numerical climate and escape models. Each of these topics adds a brick to our understand- ing of the likely—or on the contrary unlikely—atmospheres of the seven known planets of the system.
    [Show full text]
  • Last Time: Planet Finding
    Last Time: Planet Finding • Radial velocity method • Parent star’s Doppler shi • Planet minimum mass, orbital period, semi- major axis, orbital eccentricity • UnAl Kepler Mission, was the method with the most planets Last Time: Planet Finding • Transits – eclipse of the parent star: • Planetary radius, orbital period, semi-major axis • Now the most common way to find planets Last Time: Planet Finding • Direct Imaging • Planetary brightness, distance from parent star at that moment • About 10 planets detected Last Time: Planet Finding • Lensing • Planetary mass and, distance from parent star at that moment • You want to look towards the center of the galaxy where there is a high density of stars Last Time: Planet Finding • Astrometry • Tiny changes in star’s posiAon are not yet measurable • Would give you planet’s mass, orbit, and eccentricity One more important thing to add: • Giant planets (which are easiest to detect) are preferenAally found around stars that are abundant in iron – “metallicity” • Iron is the easiest heavy element to measure in a star • Heavy-element rich planetary systems make planets more easily 13.2 The Nature of Extrasolar Planets Our goals for learning: • What have we learned about extrasolar planets? • How do extrasolar planets compare with planets in our solar system? Measurable Properties • Orbital period, distance, and orbital shape • Planet mass, size, and density • Planetary temperature • Composition Orbits of Extrasolar Planets • Nearly all of the detected planets have orbits smaller than Jupiter’s. • This is a selection effect: Planets at greater distances are harder to detect with the Doppler technique. Orbits of Extrasolar Planets • Orbits of some extrasolar planets are much more elongated (have a greater eccentricity) than those in our solar system.
    [Show full text]
  • Survival of Satellites During the Migration of a Hot Jupiter: the Influence of Tides
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1590-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Survival of satellites during the migration of a Hot Jupiter: the influence of tides Emeline Bolmont (1), Apurva V. Oza (2), Sergi Blanco-Cuaresma (3), Christoph Mordasini (2), Pierre Auclair-Desrotour (2), Adrien Leleu (2) (1) Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland ([email protected]) (2) Physikalisches Institut, Universität Bern, Gesellschaftsstr. 6, 3012, Bern, Switzerland (3) Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Abstract 2. The model We explore the origin and stability of extrasolar satel- lites orbiting close-in gas giants, by investigating if the Tidal interactions 1 M⊙ satellite can survive the migration of the planet in the 1 MIo protoplanetary disk. To accomplish this objective, we 1 MJup used Posidonius, a N-Body code with an integrated tidal model, which we expanded to account for the migration of the gas giant in a disk. Preliminary re- Inner edge of disk: ain sults suggest the survival of the satellite is rare, which Type 2 migration: !mig would indicate that if such satellites do exist, capture is a more likely process. Figure 1: Schema of the simulation set up: A Io-like satellite orbits around a Jupiter-like planet with a solar- 1. Introduction like host star. Satellites around Hot Jupiters were first thought to be lost by falling onto their planet over Gyr timescales (e.g. [1]). This is due to the low tidal dissipation factor of Jupiter (Q 106, [10]), likely to be caused by the 2.1.
    [Show full text]
  • Gemini Planet Imager Spectroscopy of the Dusty Substellar Companion HD 206893 B
    The Astronomical Journal, 161:5 (24pp), 2021 January https://doi.org/10.3847/1538-3881/abc263 © 2020. The American Astronomical Society. All rights reserved. Gemini Planet Imager Spectroscopy of the Dusty Substellar Companion HD206893B K. Ward-Duong1,2 , J. Patience2, K. Follette3 , R. J. De Rosa4,5 , J. Rameau6,7 , M. Marley8 , D. Saumon9 , E. L. Nielsen4 , A. Rajan10 , A. Z. Greenbaum11 , J. Lee12, J. J. Wang13,14,40 , I. Czekala4,14,41 , G. Duchêne6,14 , B. Macintosh4 , S. Mark Ammons15 , V. P. Bailey16 , T. Barman17 , J. Bulger18,19 , C. Chen10 , J. Chilcote4,20 , T. Cotten12 , R. Doyon7, T. M. Esposito14 , M. P. Fitzgerald21 , B. L. Gerard22,23 , S. J. Goodsell24 , J. R. Graham14, P. Hibon5 , J. Hom2 , L.-W. Hung25 , P. Ingraham26 , P. Kalas14,27 , Q. Konopacky28 , J. E. Larkin21 , J. Maire28, F. Marchis27 , C. Marois23,29 , S. Metchev30,31 , M. A. Millar-Blanchaer16,42 , R. Oppenheimer32 , D. Palmer15 , M. Perrin10 , L. Poyneer15, L. Pueyo10, F. T. Rantakyrö33 , B. Ren34 , J.-B. Ruffio4 , D. Savransky35 , A. C. Schneider36,37 , A. Sivaramakrishnan10 , I. Song12 , R. Soummer10 , M. Tallis4, S. Thomas26 , J. Kent Wallace16 , S. Wiktorowicz38 , and S. Wolff39 1 Five College Astronomy Department, Amherst College, Amherst, MA 01002, USA; [email protected] 2 School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287, USA 3 Physics & Astronomy Department, Amherst College, 21 Merrill Science Drive, Amherst, MA 01002, USA 4 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 5 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 6 Univ.
    [Show full text]
  • Elliptical Instability in Terrestrial Planets and Moons
    A&A 539, A78 (2012) Astronomy DOI: 10.1051/0004-6361/201117741 & c ESO 2012 Astrophysics Elliptical instability in terrestrial planets and moons D. Cebron1,M.LeBars1, C. Moutou2,andP.LeGal1 1 Institut de Recherche sur les Phénomènes Hors Equilibre, UMR 6594, CNRS and Aix-Marseille Université, 49 rue F. Joliot-Curie, BP 146, 13384 Marseille Cedex 13, France e-mail: [email protected] 2 Observatoire Astronomique de Marseille-Provence, Laboratoire d’Astrophysique de Marseille, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France Received 21 July 2011 / Accepted 16 January 2012 ABSTRACT Context. The presence of celestial companions means that any planet may be subject to three kinds of harmonic mechanical forcing: tides, precession/nutation, and libration. These forcings can generate flows in internal fluid layers, such as fluid cores and subsurface oceans, whose dynamics then significantly differ from solid body rotation. In particular, tides in non-synchronized bodies and libration in synchronized ones are known to be capable of exciting the so-called elliptical instability, i.e. a generic instability corresponding to the destabilization of two-dimensional flows with elliptical streamlines, leading to three-dimensional turbulence. Aims. We aim here at confirming the relevance of such an elliptical instability in terrestrial bodies by determining its growth rate, as well as its consequences on energy dissipation, on magnetic field induction, and on heat flux fluctuations on planetary scales. Methods. Previous studies and theoretical results for the elliptical instability are re-evaluated and extended to cope with an astro- physical context. In particular, generic analytical expressions of the elliptical instability growth rate are obtained using a local WKB approach, simultaneously considering for the first time (i) a local temperature gradient due to an imposed temperature contrast across the considered layer or to the presence of a volumic heat source and (ii) an imposed magnetic field along the rotation axis, coming from an external source.
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Adaptive Multibody Gravity Assist Tours Design in Jovian System for the Ganymede Landing
    TO THE ADAPTIVE MULTIBODY GRAVITY ASSIST TOURS DESIGN IN JOVIAN SYSTEM FOR THE GANYMEDE LANDING Grushevskii A.V.(1), Golubev Yu.F.(2), Koryanov V.V.(3), and Tuchin A.G.(4) (1)KIAM (Keldysh Institute of Applied Mathematics), Miusskaya sq., 4, Moscow, 125047, Russia, +7 495 333 8067, E-mail: [email protected] (2)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (3)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] (4)KIAM, Miusskaya sq., 4, Moscow, 125047, Russia, E-mail: [email protected] Keywords: gravity assist, adaptive mission design, trajectory design, TID, phase beam Introduction Modern space missions inside Jovian system are not possible without multiple gravity assists (as well as in Saturnian system, etc.). The orbit design for real upcoming very complicated missions by NASA, ESA, RSA should be adaptive to mission parameters, such as: the time of Jovian system arrival, incomplete information about ephemeris of Galilean Moons and their gravitational fields, errors of flybys implementation, instrumentation deflections. Limited dynamic capabilities, taking place in case of maneuvering around Jupiter's moons, demand multiple encounters (about 15-30 times) for these purposes. Flexible algorithm of current mission scenarios synthesis (specially selected) and their operative transformation is required. Mission design is complicated due to requirements of the Ganymede Orbit Insertion (GOI) ("JUICE" ESA) and also Ganymede Landing implementation ("Laplas-P" RSA [1]) comparing to the ordinary early ―velocity gain" missions since ―Pioneers‖ and "Voyagers‖. Thus such scenario splits in two parts. Part 1(P1), as usually, would be used to reduce the spacecraft’s orbital energy with respect to Jupiter and set up the conditions for more frequent flybys.
    [Show full text]
  • Jupiter Mass
    CESAR Science Case Jupiter Mass Calculating a planet’s mass from the motion of its moons Student’s Guide Mass of Jupiter 2 CESAR Science Case Table of Contents The Mass of Jupiter ........................................................................... ¡Error! Marcador no definido. Kepler’s Three Laws ...................................................................................................................................... 4 Activity 1: Properties of the Galilean Moons ................................................................................................. 6 Activity 2: Calculate the period of your favourite moon ................................................................................. 9 Activity 3: Calculate the orbital radius of your favourite moon .................................................................... 12 Activity 4: Calculate the Mass of Jupiter ..................................................................................................... 15 Additional Activity: Predict a Transit ............................................................................................................ 16 To know more… .......................................................................................................................... 19 Links ............................................................................................................................................ 19 Mass of Jupiter 3 CESAR Science Case Background Kepler’s Three Laws The three Kepler’s Laws, published between
    [Show full text]
  • Abstracts Connecting to the Boston University Network
    20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes.
    [Show full text]