Rest of the Solar System” As We Have Covered It in MMM Through the Years
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1912.09192V2 [Astro-Ph.EP] 24 Feb 2020
Draft version February 25, 2020 Typeset using LATEX preprint style in AASTeX62 Photometric analyses of Saturn's small moons: Aegaeon, Methone and Pallene are dark; Helene and Calypso are bright. M. M. Hedman,1 P. Helfenstein,2 R. O. Chancia,1, 3 P. Thomas,2 E. Roussos,4 C. Paranicas,5 and A. J. Verbiscer6 1Department of Physics, University of Idaho, Moscow, ID 83844 2Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca NY 14853 3Center for Imaging Science, Rochester Institute of Technology, Rochester NY 14623 4Max Planck Institute for Solar System Research, G¨ottingen,Germany 37077 5APL, John Hopkins University, Laurel MD 20723 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904 ABSTRACT We examine the surface brightnesses of Saturn's smaller satellites using a photometric model that explicitly accounts for their elongated shapes and thus facilitates compar- isons among different moons. Analyses of Cassini imaging data with this model reveals that the moons Aegaeon, Methone and Pallene are darker than one would expect given trends previously observed among the nearby mid-sized satellites. On the other hand, the trojan moons Calypso and Helene have substantially brighter surfaces than their co-orbital companions Tethys and Dione. These observations are inconsistent with the moons' surface brightnesses being entirely controlled by the local flux of E-ring par- ticles, and therefore strongly imply that other phenomena are affecting their surface properties. The darkness of Aegaeon, Methone and Pallene is correlated with the fluxes of high-energy protons, implying that high-energy radiation is responsible for darkening these small moons. Meanwhile, Prometheus and Pandora appear to be brightened by their interactions with nearby dusty F ring, implying that enhanced dust fluxes are most likely responsible for Calypso's and Helene's excess brightness. -
Lab 7: Gravity and Jupiter's Moons
Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in the Universe, Galactic Superclusters. The galaxies themselves are held together by gravity, as are all of the star systems within them. Our own Solar System is a collection of bodies gravitationally bound to our star, Sol. Cutting edge science requires the use of Einstein's General Theory of Relativity to explain gravity. But the interactions of the bodies in our Solar System were understood long before Einstein's time. In chapter two of Chaisson McMillan's Astronomy Today, you went over Kepler's Laws. These laws of gravity were made to describe the interactions in our Solar System. P2=a3/M Where 'P' is the orbital period in Earth years, the time for the body to make one full orbit. 'a' is the length of the orbit's semi-major axis, for nearly circular orbits the orbital radius. 'M' is the total mass of the system in units of Solar Masses. Jupiter System Montage picture from NASA ID = PIA01481 Jupiter has over 60 moons at the last count, most of which are asteroids and comets captured from Written by Meagan White and Paul Lewis Page 1 the Asteroid Belt. When Galileo viewed Jupiter through his early telescope, he noticed only four moons: Io, Europa, Ganymede, and Callisto. The Jupiter System can be thought of as a miniature Solar System, with Jupiter in place of the Sun, and the Galilean moons like planets. -
The Geology of the Rocky Bodies Inside Enceladus, Europa, Titan, and Ganymede
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2905.pdf THE GEOLOGY OF THE ROCKY BODIES INSIDE ENCELADUS, EUROPA, TITAN, AND GANYMEDE. Paul K. Byrne1, Paul V. Regensburger1, Christian Klimczak2, DelWayne R. Bohnenstiehl1, Steven A. Hauck, II3, Andrew J. Dombard4, and Douglas J. Hemingway5, 1Planetary Research Group, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA ([email protected]), 2Department of Geology, University of Georgia, Athens, GA 30602, USA, 3Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH 44106, USA, 4Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA, 5Department of Earth & Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA. Introduction: The icy satellites of Jupiter and horizontal stresses, respectively, Pp is pore fluid Saturn have been the subjects of substantial geological pressure (found from (3)), and μ is the coefficient of study. Much of this work has focused on their outer friction [12]. Finally, because equations (4) and (5) shells [e.g., 1–3], because that is the part most readily assess failure in the brittle domain, we also considered amenable to analysis. Yet many of these satellites ductile deformation with the relation n –E/RT feature known or suspected subsurface oceans [e.g., 4– ε̇ = C1σ exp , (6) 6], likely situated atop rocky interiors [e.g., 7], and where ε̇ is strain rate, C1 is a constant, σ is deviatoric several are of considerable astrobiological significance. stress, n is the stress exponent, E is activation energy, R For example, chemical reactions at the rock–water is the universal gas constant, and T is temperature [13]. -
Galileo and the Telescope
Galileo and the Telescope A Discussion of Galileo Galilei and the Beginning of Modern Observational Astronomy ___________________________ Billy Teets, Ph.D. Acting Director and Outreach Astronomer, Vanderbilt University Dyer Observatory Tuesday, October 20, 2020 Image Credit: Giuseppe Bertini General Outline • Telescopes/Galileo’s Telescopes • Observations of the Moon • Observations of Jupiter • Observations of Other Planets • The Milky Way • Sunspots Brief History of the Telescope – Hans Lippershey • Dutch Spectacle Maker • Invention credited to Hans Lippershey (c. 1608 - refracting telescope) • Late 1608 – Dutch gov’t: “ a device by means of which all things at a very great distance can be seen as if they were nearby” • Is said he observed two children playing with lenses • Patent not awarded Image Source: Wikipedia Galileo and the Telescope • Created his own – 3x magnification. • Similar to what was peddled in Europe. • Learned magnification depended on the ratio of lens focal lengths. • Had to learn to grind his own lenses. Image Source: Britannica.com Image Source: Wikipedia Refracting Telescopes Bend Light Refracting Telescopes Chromatic Aberration Chromatic aberration limits ability to distinguish details Dealing with Chromatic Aberration - Stop Down Aperture Galileo used cardboard rings to limit aperture – Results were dimmer views but less chromatic aberration Galileo and the Telescope • Created his own (3x, 8-9x, 20x, etc.) • Noted by many for its military advantages August 1609 Galileo and the Telescope • First observed the -
Astronomy 330 HW 2 Presentations Outline
Astronomy 330 HW 2 •! Stanley Swat This class (Lecture 12): http://www.ufohowto.com/ Life in the Solar System •! Lucas Guthrie Next Class: http://www.crystalinks.com/abduction.html Life in the Solar System HW 5 is due Wednesday Music: We Are All Made of Stars– Moby Presentations Outline •! Daniel Borup •! Life on Venus? Futurama •! Life on Mars? Life in the Solar System? Earth – Venus comparison •! We want to examine in more detail the backyard of humans. •! What we find may change our estimates of ne. Radius 0.95 Earth Surface gravity 0.91 Earth Venus is the hottest Mass 0.81 Earth planet, the closest in Distance from Sun 0.72 AU size to Earth, the closest Average Temp 475 C in distance to Earth, and Year 224.7 Earth days the planet with the Length of Day 116.8 Earth days longest day. Atmosphere 96% CO2 What We Used to Think Turns Out that Venus is Hell Venus must be hotter, as it is closer the Sun, but the cloud •! The surface is hot enough to melt lead cover must reflect back a large amount of the heat. •! There is a runaway greenhouse effect •! There is almost no water In 1918, a Swedish chemist and Nobel laureate concluded: •! There is sulfuric acid rain •! Everything on Venus is dripping wet. •! Most of the surface is no doubt covered with swamps. •! Not a place to visit for Spring Break. •! The constantly uniform climatic conditions result in an entire absence of adaptation to changing exterior conditions. •! Only low forms of life are therefore represented, mostly no doubt, belonging to the vegetable kingdom; and the organisms are nearly of the same kind all over the planet. -
Cassini Update
Cassini Update Dr. Linda Spilker Cassini Project Scientist Outer Planets Assessment Group 22 February 2017 Sols%ce Mission Inclina%on Profile equator Saturn wrt Inclination 22 February 2017 LJS-3 Year 3 Key Flybys Since Aug. 2016 OPAG T124 – Titan flyby (1584 km) • November 13, 2016 • LAST Radio Science flyby • One of only two (cf. T106) ideal bistatic observations capturing Titan’s Northern Seas • First and only bistatic observation of Punga Mare • Western Kraken Mare not explored by RSS before T125 – Titan flyby (3158 km) • November 29, 2016 • LAST Optical Remote Sensing targeted flyby • VIMS high-resolution map of the North Pole looking for variations at and around the seas and lakes. • CIRS last opportunity for vertical profile determination of gases (e.g. water, aerosols) • UVIS limb viewing opportunity at the highest spatial resolution available outside of occultations 22 February 2017 4 Interior of Hexagon Turning “Less Blue” • Bluish to golden haze results from increased production of photochemical hazes as north pole approaches summer solstice. • Hexagon acts as a barrier that prevents haze particles outside hexagon from migrating inward. • 5 Refracting Atmosphere Saturn's• 22unlit February rings appear 2017 to bend as they pass behind the planet’s darkened limb due• 6 to refraction by Saturn's upper atmosphere. (Resolution 5 km/pixel) Dione Harbors A Subsurface Ocean Researchers at the Royal Observatory of Belgium reanalyzed Cassini RSS gravity data• 7 of Dione and predict a crust 100 km thick with a global ocean 10’s of km deep. Titan’s Summer Clouds Pose a Mystery Why would clouds on Titan be visible in VIMS images, but not in ISS images? ISS ISS VIMS High, thin cirrus clouds that are optically thicker than Titan’s atmospheric haze at longer VIMS wavelengths,• 22 February but optically 2017 thinner than the haze at shorter ISS wavelengths, could be• 8 detected by VIMS while simultaneously lost in the haze to ISS. -
Copyrighted Material
Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED -
The Jovian Planets (Gas Giants) Discoveries
The Jovian Planets (Gas Giants) Discoveries Saturn Jupiter Jupiter and Saturn known to ancient astronomers. Uranus discovered in 1781 by Sir William Herschel (England). Neptune discovered in 1845 by Johann Galle (Germany). Predicted to exist by John Adams and Urbain Leverrier because of irregularities in Uranus' orbit. Almost discovered by Galileo in 1613 Uranus Neptune (roughly to scale) Remember that compared to Terrestrial planets, Jovian planets: Orbital Properties: Distance from Sun Orbital Period are massive (AU) (years) are less dense (0.7 – 1.3 g/cm3) Jupiter 5.2 11.9 are mostly gas (and liquid) Saturn 9.5 29.4 rotate fast (9 - 17 hours rotation periods) Uranus 19.2 84 have rings and many moons Neptune 30.1 164 Known Moons Mass (MEarth) Radius (REarth) Major Missions: Launch Planets visited Jupiter 318 11 63 Voyager 1 1977 Jupiter, Saturn (0.001 MSun) Saturn 95 9.5 50 Voyager 2 1979 Jupiter, Saturn, Uranus, Neptune Uranus 15 4 27 Galileo 1989 Jupiter Neptune 17 3.9 13 Cassini 1997 Jupiter, Saturn Jupiter's Atmosphere Composition: mostly H, some He, traces of other elements (true for all Jovians). Gravity strong enough to retain even light elements. Mostly molecular. Altitude 0 km defined as top of troposphere (cloud layer) Ammonia (NH3) ice gives white colors. Ammonium hydrosulfide Optical – colors dictated Infrared - traces heat in (NH4SH) ice should form by how molecules atmosphere. here, somehow giving red, reflect sunlight yellow, brown colors. Water ice layer not seen due to higher layers. So white colors from cooler, higher clouds, brown and red from warmer, lower clouds. -
HOMERIC-ILIAD.Pdf
Homeric Iliad Translated by Samuel Butler Revised by Soo-Young Kim, Kelly McCray, Gregory Nagy, and Timothy Power Contents Rhapsody 1 Rhapsody 2 Rhapsody 3 Rhapsody 4 Rhapsody 5 Rhapsody 6 Rhapsody 7 Rhapsody 8 Rhapsody 9 Rhapsody 10 Rhapsody 11 Rhapsody 12 Rhapsody 13 Rhapsody 14 Rhapsody 15 Rhapsody 16 Rhapsody 17 Rhapsody 18 Rhapsody 19 Rhapsody 20 Rhapsody 21 Rhapsody 22 Rhapsody 23 Rhapsody 24 Homeric Iliad Rhapsody 1 Translated by Samuel Butler Revised by Soo-Young Kim, Kelly McCray, Gregory Nagy, and Timothy Power [1] Anger [mēnis], goddess, sing it, of Achilles, son of Peleus— 2 disastrous [oulomenē] anger that made countless pains [algea] for the Achaeans, 3 and many steadfast lives [psūkhai] it drove down to Hādēs, 4 heroes’ lives, but their bodies it made prizes for dogs [5] and for all birds, and the Will of Zeus was reaching its fulfillment [telos]— 6 sing starting from the point where the two—I now see it—first had a falling out, engaging in strife [eris], 7 I mean, [Agamemnon] the son of Atreus, lord of men, and radiant Achilles. 8 So, which one of the gods was it who impelled the two to fight with each other in strife [eris]? 9 It was [Apollo] the son of Leto and of Zeus. For he [= Apollo], infuriated at the king [= Agamemnon], [10] caused an evil disease to arise throughout the mass of warriors, and the people were getting destroyed, because the son of Atreus had dishonored Khrysēs his priest. Now Khrysēs had come to the ships of the Achaeans to free his daughter, and had brought with him a great ransom [apoina]: moreover he bore in his hand the scepter of Apollo wreathed with a suppliant’s wreath [15] and he besought the Achaeans, but most of all the two sons of Atreus, who were their chiefs. -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
Beauty on Display Plato and the Concept of the Kalon
BEAUTY ON DISPLAY PLATO AND THE CONCEPT OF THE KALON JONATHAN FINE Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Jonathan Fine All rights reserved ABSTRACT BEAUTY ON DISPLAY: PLATO AND THE CONCEPT OF THE KALON JONATHAN FINE A central concept for Plato is the kalon – often translated as the beautiful, fine, admirable, or noble. This dissertation shows that only by prioritizing dimensions of beauty in the concept can we understand the nature, use, and insights of the kalon in Plato. The concept of the kalon organizes aspirations to appear and be admired as beautiful for one’s virtue. We may consider beauty superficial and concern for it vain – but what if it were also indispensable to living well? By analyzing how Plato uses the concept of the kalon to contest cultural practices of shame and honour regulated by ideals of beauty, we come to see not only the tensions within the concept but also how attractions to beauty steer, but can subvert, our attempts to live well. TABLE OF CONTENTS Acknowledgements ii 1 Coordinating the Kalon: A Critical Introduction 1 1 The Kalon and the Dominant Approach 2 2 A Conceptual Problem 10 3 Overview 24 2 Beauty, Shame, and the Appearance of Virtue 29 1 Our Ancient Contemporaries 29 2 The Cultural Imagination 34 3 Spirit and the Social Dimension of the Kalon 55 4 Before the Eyes of Others 82 3 Glory, Grief, and the Problem of Achilles 100 1 A Tragic Worldview 103 2 The Heroic Ideal 110 3 Disgracing Achilles 125 4 Putting Poikilia in its Place 135 1 Some Ambivalences 135 2 The Aesthetics of Poikilia 138 3 The Taste of Democracy 148 4 Lovers of Sights and Sounds 173 5 The Possibility of Wonder 182 5 The Guise of the Beautiful 188 1 A Psychological Distinction 190 2 From Disinterested Admiration to Agency 202 3 The Opacity of Love 212 4 Looking Good? 218 Bibliography 234 i ACKNOWLEDGEMENTS “To do philosophy is to explore one’s own temperament,” Iris Murdoch suggested at the outset of “Of ‘God’ and ‘Good’”. -
Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 Μm Images
atmosphere Article Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 µm Images Dmitry A. Gorinov * , Ludmila V. Zasova, Igor V. Khatuntsev, Marina V. Patsaeva and Alexander V. Turin Space Research Institute, Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] (L.V.Z.); [email protected] (I.V.K.); [email protected] (M.V.P.); [email protected] (A.V.T.) * Correspondence: [email protected] Abstract: The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a superrotation mode with a westward mean speed of 60–63 m s−1 in the latitude range of 0–60◦ S, with a 1–5 m s−1 westward deceleration across the nightside. Meridional motion is significantly weaker, at 0–2 m s−1; it is equatorward at latitudes higher than 20◦ S, and changes its direction to poleward in the equatorial region with a simultaneous increase of wind speed. It was assumed that higher levels of the atmosphere are traced in the equatorial region and a fragment of the poleward branch of the direct lower cloud Hadley cell is observed. The fragment of the equatorward branch reveals itself in the middle latitudes. A diurnal variation of the meridional wind speed was found, as east of 21 h local time, the direction changes from equatorward to poleward in latitudes lower than 20◦ S.