Moon: Does It Have a Purpose
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astrometric Positions for 18 Irregular Satellites of Giant Planets from 23
Astronomy & Astrophysics manuscript no. Irregulares c ESO 2018 October 20, 2018 Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations,⋆,⋆⋆,⋆⋆⋆,⋆⋆⋆⋆ A. R. Gomes-Júnior1, M. Assafin1,†, R. Vieira-Martins1, 2, 3,‡, J.-E. Arlot4, J. I. B. Camargo2, 3, F. Braga-Ribas2, 5,D.N. da Silva Neto6, A. H. Andrei1, 2,§, A. Dias-Oliveira2, B. E. Morgado1, G. Benedetti-Rossi2, Y. Duchemin4, 7, J. Desmars4, V. Lainey4, W. Thuillot4 1 Observatório do Valongo/UFRJ, Ladeira Pedro Antônio 43, CEP 20.080-090 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 2 Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 3 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil 4 Institut de mécanique céleste et de calcul des éphémérides - Observatoire de Paris, UMR 8028 du CNRS, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 5 Federal University of Technology - Paraná (UTFPR / DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil 6 Centro Universitário Estadual da Zona Oeste, Av. Manual Caldeira de Alvarenga 1203, CEP 23.070-200 Rio de Janeiro RJ, Brazil 7 ESIGELEC-IRSEEM, Technopôle du Madrillet, Avenue Galilée, 76801 Saint-Etienne du Rouvray, France Received: Abr 08, 2015; accepted: May 06, 2015 ABSTRACT Context. The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured. -
CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6) -
Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D
47th Lunar and Planetary Science Conference (2016) 2676.pdf Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D. Nesvorny3, 1Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria, Australia [email protected], 2SETI Institute, Mountain View, California, USA, 3Southwest Research Institute, Department of Space Studies, Boulder, CO. USA. Introduction: Surrounding Jupiter there are multi- Results: ple satellites, 67 known to-date. The most recent classi- fication system [1,2], based on orbital characteristics, uses the largest member of the group as the name and example. The closest group to Jupiter is the prograde Amalthea group, 4 small satellites embedded in a ring system. Moving outwards there are the famous Galilean moons, Io, Europa, Ganymede and Callisto, whose mass is similar to terrestrial planets. The final and largest group, is that of the outer Irregular satel- lites. Those irregulars that show a prograde orbit are closest to Jupiter and have previously been classified into three families [2], the Themisto, Carpo and Hi- malia groups. The remainder of the irregular satellites show a retrograde orbit, counter to Jupiter's rotation. Based on similarities in semi-major axis (a), inclination (i) and eccentricity (e) these satellites have been grouped into families [1,2]. In order outward from Jupiter they are: Ananke family (a 2.13x107 km ; i 148.9o; e 0.24); Carme family (a 2.34x107 km ; i 164.9o; e 0.25) and the Pasiphae family (a 2:36x107 km ; i 151.4o; e 0.41). There are some irregular satellites, recently discovered in 2003 [3], 2010 [4] and 2011[5], that have yet to be named or officially classified. -
+ View the NASA Portal + Nearearth Object (NEO) Program Planetary Satellite Discovery Circumstances the Tables B
27/05/2015 Planetary Satellite Discovery Circumstances + View the NASA Portal Search JPL + NearEarth Object (NEO) Program Planetary Satellite Discovery Circumstances The tables below show the discovery circumstances of planetary satellites and satellites of Pluto officially recognized by the International Astronomical Union (IAU). A total of 177 planetary satellites (including those of Pluto but not Earth) are represented below. References are listed where known. These data were last updated 2015 Mar09. IAU IAU provisional year discoverer(s)/spacecraft mission references number name designation discovered Satellites of Mars: 2 I Phobos 1877 A. Hall II Deimos 1877 A. Hall Satellites of Jupiter: 67 I Io 1610 Galileo II Europa 1610 Galileo III Ganymede 1610 Galileo IV Callisto 1610 Galileo V Amalthea 1892 E.E. Barnard VI Himalia 1904 C. Perrine VII Elara 1905 C. Perrine VIII Pasiphae 1908 P. Melotte IX Sinope 1914 S.B. Nicholson X Lysithea 1938 S.B. Nicholson XI Carme 1938 S.B. Nicholson XII Ananke 1951 S.B. Nicholson XIII Leda 1974 C. Kowal XIV Thebe S/1979 J2 1980 Voyager Science Team XV Adrastea S/1979 J1 1979 Voyager Science Team XVI Metis S/1979 J3 1980 Voyager Science Team XVII Callirrhoe S/1999 J1 1999 J.V. Scotti, T.B. Spahr, IAUC 7460 R.S. McMillan, J.A. Larsen, J. Montani, A.E. Gleason, T. Gehrels XVIII Themisto S/1975 J1 2000 S.S. Sheppard, D.C. Jewitt, IAUC 7525 S/2000 J1 Y. Fernandez, G. Magnier XIX Megaclite S/2000 J8 2000 S.S. Sheppard, D.C. Jewitt, IAUC 7555 Y. -
Perfect Little Planet Educator's Guide
Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet. -
385557Main Jupiter Facts1(2).Pdf
Jupiter Ratio (Jupiter/Earth) Io Europa Ganymede Callisto Metis Mass 1.90 x 1027 kg 318 15 3 Adrastea Amalthea Thebe Themisto Leda Volume 1.43 x 10 km 1320 National Aeronautics and Space Administration Equatorial Radius 71,492 km 11.2 Himalia Lysithea63 ElaraMoons S/2000 and Counting! Carpo Gravity 24.8 m/s2 2.53 Jupiter Euporie Orthosie Euanthe Thyone Mneme Mean Density 1330 kg/m3 0.240 Harpalyke Hermippe Praxidike Thelxinoe Distance from Sun 7.79 x 108 km 5.20 Largest, Orbit Period 4333 days 11.9 Helike Iocaste Ananke Eurydome Arche Orbit Velocity 13.1 km/sec 0.439 Autonoe Pasithee Chaldene Kale Isonoe Orbit Eccentricity 0.049 2.93 Fastest,Aitne Erinome Taygete Carme Sponde Orbit Inclination 1.3 degrees Kalyke Pasiphae Eukelade Megaclite Length of Day 9.93 hours 0.414 Strongest Axial Tilt 3.13 degrees 0.133 Sinope Hegemone Aoede Kallichore Callirrhoe Cyllene Kore S/2003 J2 • Composition: Almost 90% hydrogen, 10% helium, small amounts S/2003of ammonia, J3methane, S/2003 ethane andJ4 water S/2003 J5 • Jupiter is the largest planet in the solar system, in fact all the otherS/2003 planets J9combined S/2003 are not J10 as large S/2003 as Jupiter J12 S/2003 J15 S/2003 J16 S/2003 J17 • Jupiter spins faster than any other planet, taking less thanS/2003 10 hours J18 to rotate S/2003 once, which J19 causes S/2003 the planet J23 to be flattened by 6.5% relative to a perfect sphere • Jupiter has the strongest planetary magnetic field in the solar system, if we could see it from Earth it would be the biggest object in the sky • The Great Red Spot, -
CSE1030 – Introduction to Computer Science II CSE1030 – Lecture
CSE1030 – Lecture #16 CSE1030 – Introduction to Computer Science II Review: Arrays Regular 2D Arrays Irregular 2D Arrays Lecture #16 We’re Done! Arrays II CSE1030 2 class example1 Review: An Array is… { public static void main(String[] args) A Name, and a Table of Arrows (Pointers), to Blocks of { Memory: Person[] p = { new Person("Sally", 26), Person[] p = new Person[] { new Person("Frank", 28), new Person("Sally", 26), new Person("Joe", 21), new Person("Frank", 28), }; new Person("Joe", 21), }; System.out.println("Here's #2:"); System.out.println( p[1] ); System.out.println("Here's All of Them:"); p [0] Person {“Sally”, 26} for(int i = 0; i < p.length; i++) System.out.println(" " + p[i]); [1] Person {“Frank”, 28} System.out.println("Cause an Error! #4:"); [2] Person {“Joe”, 21} System.out.println( p[3] ); } CSE1030 3 } CSE1030 4 Array Example Output CSE1030 – Lecture #16 >java example1 Review: Arrays Here's #2: Regular 2D Arrays Frank(28) Here's All of Them: Irregular 2D Arrays Sally(26) We’re Done! Frank(28) Joe(21) Cause an Error! #4: Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3 at example1.main(example1.java:20) CSE1030 5 CSE1030 6 The Big Idea so far… New Idea… What about Tables? When data "looks like" this: What do we do when the data "looks like" this? (and you can't use, or don't need the complexity of, a Collection) Use an array: Use a 2-Dimensional array: Object[] array = new Object[5]; Object[3][4] array = new Object[3][4]; array = array[0] array[1] array = array[0][0] array[0][1] array[0][2] -
Wits Planetarium July 2020
Wits Planetarium July 2020 [email protected] ______________________________________________________________________________ In this newsletter: • Shows • Moon Phases • Sunrise/set and moonrise/set for Johannesburg • Astronomical Events • Eclipse • Naked Eye Planets • Southern Delta Aquariids Meteor Shower • Word Search – Moons of Jupiter Shows Currently, ALL SHOWS are SUSPENDED until further notice due to the Covid-19 pandemic and national state of disaster. Moon Phases Full Moon: 5 Jul Last Quarter: 13 Jul New Moon: 20 Jul First Quarter: 27 Jul Sunrise/set and Moonrise/set for Johannesburg – July 2020 Date Day Sunrise Sunset Moonrise Moonset h m h m h m h m 1 Wed 06:56 17:28 14:21 02:52 2 Thu 06:56 17:28 15:06 03:56 3 Fri 06:56 17:28 15:56 05:01 4 Sat 06:56 17:29 16:51 06:04 5 Sun 06:56 17:29 17:49 07:04 6 Mon 06:56 17:30 18:49 07:58 7 Tue 06:56 17:30 19:47 08:46 8 Wed 06:56 17:30 20:44 09:29 9 Thu 06:56 17:31 21:39 10:06 10 Fri 06:55 17:31 22:31 10:40 11 Sat 06:55 17:32 23:22 11:12 12 Sun 06:55 17:32 --:-- 11:43 13 Mon 06:55 17:33 00:13 12:14 14 Tue 06:55 17:33 01:04 12:45 15 Wed 06:54 17:34 01:56 13:20 16 Thu 06:54 17:34 02:50 13:58 Page 1 of 6 Date Day Sunrise Sunset Moonrise Moonset h m h m h m h m 17 Fri 06:54 17:35 03:46 14:40 18 Sat 06:53 17:35 04:43 15:29 19 Sun 06:53 17:35 05:41 16:23 20 Mon 06:53 17:36 06:37 17:22 21 Tue 06:52 17:36 07:30 18:25 22 Wed 06:52 17:37 08:19 19:30 23 Thu 06:52 17:37 09:04 20:34 24 Fri 06:51 17:38 09:45 21:37 25 Sat 06:51 17:38 10:23 22:40 26 Sun 06:50 17:39 11:01 23:42 27 Mon 06:50 17:39 11:39 --:-- 28 Tue 06:49 17:40 12:20 00:45 29 Wed 06:49 17:40 13:03 01:48 30 Thu 06:48 17:41 13:50 02:51 31 Fri 06:47 17:41 14:42 03:54 Data calculated using MICA, US Naval Observatory Astronomical Events – July 2020 Date Day Time Event 1 Wed 04:45 Mercury Inferior Conj. -
Irregular Satellites of the Giant Planets 411
Nicholson et al.: Irregular Satellites of the Giant Planets 411 Irregular Satellites of the Giant Planets Philip D. Nicholson Cornell University Matija Cuk University of British Columbia Scott S. Sheppard Carnegie Institution of Washington David Nesvorný Southwest Research Institute Torrence V. Johnson Jet Propulsion Laboratory The irregular satellites of the outer planets, whose population now numbers over 100, are likely to have been captured from heliocentric orbit during the early period of solar system history. They may thus constitute an intact sample of the planetesimals that accreted to form the cores of the jovian planets. Ranging in diameter from ~2 km to over 300 km, these bodies overlap the lower end of the presently known population of transneptunian objects (TNOs). Their size distributions, however, appear to be significantly shallower than that of TNOs of comparable size, suggesting either collisional evolution or a size-dependent capture probability. Several tight orbital groupings at Jupiter, supported by similarities in color, attest to a common origin followed by collisional disruption, akin to that of asteroid families. But with the limited data available to date, this does not appear to be the case at Uranus or Neptune, while the situa- tion at Saturn is unclear. Very limited spectral evidence suggests an origin of the jovian irregu- lars in the outer asteroid belt, but Saturn’s Phoebe and Neptune’s Nereid have surfaces domi- nated by water ice, suggesting an outer solar system origin. The short-term dynamics of many of the irregular satellites are dominated by large-amplitude coupled oscillations in eccentricity and inclination and offer several novel features, including secular resonances. -
Moon-O-Meter
Earth Number Name Designation a (mi) a (km) i (°) e Per (days) Mag Size (mi) Size (km) Year the Moon 238,800 384,400 5.145 0.0549 27.3217 -12.7 2,159 3,476 n/a Mars Number Name Designation a (mi) a (km) i (°) e Per (days) Mag Size (mi) Size (km) Year I Phobos 5,825 9,378 1.08 0.0151 0.31891 11.3 7 11 1877 II Deimos 14,571 23,459 1.79 0.0005 1.26244 12.4 4 6 1877 Jupiter Number Name Designation a (mi) a (km) i (°) e Per (days) Mag Size (mi) Size (km) Year XVI Metis 79,600 128,100 0.021 0.001 0.3 17.5 27 44 1979 XV Adrastea 80,100 128,900 0.027 0.002 0.3 18.7 10 16 1979 V Amalthea 112,700 181,400 0.389 0.003 0.5 14.1 104 168 1892 XIV Thebe 137,800 221,900 1.07 0.018 0.68 16 61 98 1979 I Io 262,000 421,800 0.036 0 1.77 5 2,263 3,643 1610 II Europa 416,800 671,100 0.467 0 3.55 5.3 1,939 3,122 1610 III Ganymede 664,800 1,070,400 0.172 0.001 7.16 4.6 3,268 5,262 1610 IV Callisto 1,169,400 1,882,700 0.307 0.007 16.69 5.7 2,994 4,821 1610 XVIII Themisto S/2000 J1 4,662,700 7,507,000 43.08 0.242 130 21 6 9 2000 XIII Leda 6,934,800 11,165,000 27.46 0.164 240.9 20.2 11 18 1974 VI Himalia 7,118,600 11,461,000 27.5 0.162 250.6 14.8 114 184 1904 X Lysithea 7,277,600 11,717,000 28.3 0.112 259.2 18.2 24 38 1938 VII Elara 7,292,500 11,741,000 26.63 0.217 259.6 16.6 48 78 1905 S/2000 J11 7,798,100 12,555,000 28.3 0.248 287 22.4 2 4 2000 XLVI Carpo S/2003 J20 10,552,200 16,989,000 51.4 0.43 456.1 23 2 3 2003 XXXIV Euporie S/2001 J10 11,988,800 19,302,000 145.8 0.144 550.7 23.1 1 2 2001 XXXV Orthosie S/2001 J9 12,870,200 20,721,000 145.9 0.281 622.6 23.1 -
Alactic Observer Gjohn J
alactic Observer GJohn J. McCarthy Observatory Volume 5, No. 7/8 July/August 2012 Distant Partners About 117-140 million light years from Earth, the twin galaxies NGC 3314 appear locked in a pas de deux; but in reality they are tens of millions of light years apart. That's ten times the distance to our nearest galactic neighbor Andromeda. Image Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration, and W. Keel (University of Alabama) The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 Allan Ostergren www.mccarthyobservatory.org Website Development JJMO Staff John Gebauer It is through their efforts that the McCarthy Observatory Marc Polansky has established itself as a significant educational and Josh Reynolds recreational resource within the western Connecticut Technical Support community. Bob Lambert Dr. Parker Moreland Steve Barone Allan Ostergren Colin Campbell Cecilia Page Dennis Cartolano Joe Privitera Mike Chiarella Bruno Ranchy Jeff Chodak Josh Reynolds Route Bill Cloutier Barbara Richards Charles Copple Monty Robson Randy Fender Don Ross John Gebauer Ned Sheehey Elaine Green Gene Schilling Tina Hartzell Diana Shervinskie Tom Heydenburg Katie Shusdock Phil Imbrogno Jon Wallace Bob Lambert Bob Willaum Parker Moreland, PhD Paul Woodell Amy Ziffer In This Issue THE YEAR OF THE SOLAR SYSTEM .................................. 3 INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES ...... 17 OUT THE WINDOW ON YOUR LEFT ................................. 4 SOLAR ACTIVITY ........................................................ 18 THE ARISTARCHUS PLATEAU .......................................... 5 COVER PHOTO AND OTHER CREDITS ............................ -
Solar System Tables
Solar System Physical Data Physical Properties of Solar System Members S o l a Equatorial Mass1 Density2 Gravity3 Albedo4 r S Diameter Earth=1 H O=1 Earth=1 y 2 s t e SUN 865,278 miles 1,392,530 km 332,946 1.41 27.9 n/a m MERCURY 3,032 miles 4,879 km 0.055 5.43 0.38 11% VENUS 7,521 miles 12,104 km 0.815 5.25 0.90 65% EARTH 7,926 miles 12,756 km 1 5.52 1.00 37% MARS 4,228 miles 6,805 km 0.107 3.95 0.38 15% JUPITER 88,844 miles 142,980 km 317.8 1.33 2.53 52% SATURN 74,900 miles5 120,540 km5 95.2 0.69 1.06 47% URANUS 31,764 miles 51,120 km 14.5 1.29 0.90 51% NEPTUNE 30,777 miles 49,530 km 17.2 1.64 1.14 41% PLUTO 1,433 miles 2,306 km 0.0025 2.03 0.08 30% 1Earth’s mass is 1.32 x 1025 pounds (5.97 x 1024 kg). 2Density per unit volume as compared to water. For comparsion, the density of alumium is 2.7 and iron is 7.7. 3Gravity at equator. 4Albedo is the amount of sunlight reflected by the Planet. 5Saturn without rings. Visible rings are approximately 170,000 miles (273,600 km) in diameter. Rotational Period Escape Oblateness2 Inclination (Planet’s Day) Velocity1 to Orbit3 SUN 25 to 35 days4 384 miles/s 617.5 km/s 0 7.2 5 ∞ MERCURY 58.7 days 2.6 miles/s 4.2 km/s 0 0.0 ∞ VENUS 243.0 days 6.5 miles/s 10.4 km/s 0 177.4 ∞ EARTH 1 day 6.96 miles/s 11.2 km/s 0.34% 23.4 ∞ MARS 24.62 hours 3.1 miles/s 5.0 km/s 0.74% 25.2 ∞ JUPITER 9.84 hours 37 miles/s 59.5 km/s 6.5% 3.1 ∞ SATURN 10.23 hours 22.1 miles/s 35.5 km/s 9.8% 25.3 ∞ URANUS 17.9 hours 13.2 miles/s 21.3 km/s 2.3% 97.9 ∞ NEPTUNE 19.2 hours 14.6 miles/s 23.5 km/s 1.7% 28.3 ∞ PLUTO 6.4 days 0.8 miles/s 1.3 km/s unknown 123 ∞ 1At equator.