A Tour of the Solar System

Total Page:16

File Type:pdf, Size:1020Kb

A Tour of the Solar System A tour of the solar system © 2014 Brilliant Classes by Piyush • The Solar System is made up of the Sun and all the planets, asteroids, and other objects that orbit the Sun. • The center of the Solar System is the Sun. • There are nine planets in our Solar System. Starting with the closest to the sun they are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. © 2014 Brilliant Classes by Piyush • The closest four planets Mercury, Venus, Earth, and Mars are termed terrestrial planets, meaning they have a hard rocky surface. • The furthest four planets Jupiter, Saturn, Uranus, and Neptune are called gas giants. • These planets are much larger and their surface is composed of gas elements mostly hydrogen. • Pluto is a big ball of ice. © 2014 Brilliant Classes by Piyush Planets in our Solar System © 2014 Brilliant Classes by Piyush Sun • It is estimated to be 4.5 billion years old. • 99.86% of all the mass of the solar system is found in the Sun. • The temperature of core of the Sun is 16 million °C. • The temperature of the surface of the Sun is 7000° C. • The sun is the biggest, brightest, and hottest object in the solar system. • The sun is an ordinary star. • The sun is made of about 70% hydrogen and 28% helium. © 2014 Brilliant Classes by Piyush Sun © 2014 Brilliant Classes by Piyush Mercury • 1st planet out from the sun. • Mercury is solid and is covered with craters. • Mercury has almost no atmosphere. • Mercury is the eighth largest planet. • Density of mercury is 5.43 g/cm3 . • Temperatures of mercury is High: 467 °C on the sunny side of the planet. Low: -183 °C on the dark side of the planet. © 2014 Brilliant Classes by Piyush Mercury © 2014 Brilliant Classes by Piyush Venus • Venus is the sixth largest planet. It’s about three- fourths the size of earth. • The surface is rocky and very hot. The atmosphere completely hides the surface and traps the heat. • 2nd planet out from the sun. • It is covered by thick, rapidly spinning clouds. Due to its thick cloud layer reflecting sunlight, it is the brightest planet in the sky. • Temperature of the Venus is 450 °C. It’s hotter than Mercury due to the greenhouse effect. © 2014 Brilliant Classes by Piyush Venus © 2014 Brilliant Classes by Piyush Earth • Earth is the fifth largest planet and the third from the sun. • Liquid covers 71 percent of the Earth’s surface. • The Earth has one moon. • Size of Earth is 40,000km (24,8000miles) around at the equator. • General composition of Earth is Rocky material. It has a nickel-iron core with a molten mantle and solid rocky crust. • Atmosphere is made up of Mostly oxygen (21%) and nitrogen (78%). Some argon, carbon dioxide, and water vapor. © 2014 Brilliant Classes by Piyush Earth © 2014 Brilliant Classes by Piyush Mars • Mars is the fourth planet from the sun. • Mars has a thin atmosphere that contains mostly carbon dioxide. • Mars has two small moons. • Mars appears red due to the iron oxide in its soil. It has polar ice caps that grow and recede with the seasons, and it has dust storms, which cause giant dunes, wind streaks, and wind-carved features. • Temperature of Mars is -87 °C to -5 °C. © 2014 Brilliant Classes by Piyush Mars © 2014 Brilliant Classes by Piyush Jupiter • 5th planet out from the sun. • The Great Red Spot, a huge storm of swirling gas that has lasted for hundreds of years. • Jupiter does not have a solid surface. The planet is a ball of liquid surrounded by gas. • It is sometimes called a “mini-solar system” because of its numerous moons and several rings. • Jupiter Size is 1316 times the volume of the Earth. It is the planet with the highest gravity in the solar system. • Jupiter temperature© 2014 is Brilliant -108 Classes °byC Piyush. Jupiter © 2014 Brilliant Classes by Piyush Moons of Jupiter 1. Io 17. Callirrhoe 33. Euanthe 49. Kore 2. Europa 18. Themisto 34. Euporie 50. S/2003 J2 3. Ganymede 19. Megaclite 35. Orthosie 51. S/2003 J3 4. Callisto 20. Taygete 36. Sponde 52. S/2003 J4 5. Amalthea 21. Chaldene 37. Kale 53. S/2000 J11 6. Himalia 22. Harpalyke 38. Pasithee 54. S/2000 J5 7. Elara 23. Kalyke 39. Hegemone 55. S/2003 J9 8. Pasiphae 24. Iocaste 40. Mneme 56. S/2003 J10 9. Sinope 25. Erinome 41. Aoede 57. S/2003 J12 10. Lysithea 26. Isonoe 42. Thelxinoe 58. S/2003 J15 11. Carme 27. Praxidike 43. Arche 59. S/2003 J16 12. Ananke 28. Autonoe 44. Kallichore 60. S/2003 J17 13. Leda 29. Thyone 45. Helike 61. S/2003 J18 14. Thebe 30. Hermippe 46. Carpo 62. S/2003 J19 15. Adrastea 31. Aitne 47. Eukelade 63. S/2003 J23 16. Metis 32. Eurydome 48. Cyllene © 2014 Brilliant Classes by Piyush Saturn • Saturn is the second largest planet and the sixth from the sun. • Saturn is made of materials that are lighter than water. • It is a Gas giant, meaning it is mostly made of the gases hydrogen and helium. • Saturn size is 755 times the volume of the Earth. • Saturn has 60 Moons. • Temperature of Saturn is -139 °C. • Saturn’s rings are not solid; they are composed of small countless particles. © 2014 Brilliant Classes by Piyush Saturn © 2014 Brilliant Classes by Piyush Uranus • Uranus is the third largest planet and the seventh from the sun. • Uranus is one of the giant gas planets. it is mostly made of the gases hydrogen and helium, with a small amount of methane and traces of water and ammonia. It has no solid surface. • Uranus is blue-green because of the methane in its atmosphere. • Temperature of Uranus is -197 °C. • Uranus has 27 Moons. © 2014 Brilliant Classes by Piyush Uranus © 2014 Brilliant Classes by Piyush Neptune • Neptune is the fourth largest planet and the eighth from the sun. • Because of the orbits, from 1979 to 1999, Neptune was the ninth planet. • Like Uranus, the methane gives its color to Neptune. • Neptune has 13 Moons. • Temperature of Neptune is -200 °C . • Size of Neptune is 44 times the volume of the Earth. © 2014 Brilliant Classes by Piyush Neptune © 2014 Brilliant Classes by Piyush Pluto • Pluto is the smallest planet and usually the farthest from the sun. • Pluto is the only planet that has not been visited by a spacecraft. • It appears like a large frozen ball of ice. • Size of Pluto is 0.005 the volume of the Earth. It is the planet with the lowest gravity in the solar system. • Temperature of Pluto is -233 °C . • Pluto has 3 Moons. © 2014 Brilliant Classes by Piyush Pluto © 2014 Brilliant Classes by Piyush • In addition to the Sun and the eight planets, there are other objects that are part of the Solar System. • Dwarf planets • Comets • Asteroid belt • Kuiper belt • Oort cloud © 2014 Brilliant Classes by Piyush Dwarf planets • Dwarf planets are objects similar to planets in the Solar System, however they are defined as not large enough to have "cleared their orbital region of other objects.“ • Some of the dwarf planets in the Solar System include Pluto, Ceres, Eris, Haumea, and Makemake. © 2014 Brilliant Classes by Piyush Dwarf planets © 2014 Brilliant Classes by Piyush Comets • Comets are objects made of ice, dust, and rocks that orbit the sun. • They often have a visible "tail" of gas that comes from solar radiation and solar wind. • Comets originate from the Kuiper belt and the Oort cloud. • It is composed of a mixture of non-volatile grains and frozen gases. © 2014 Brilliant Classes by Piyush Comets © 2014 Brilliant Classes by Piyush Asteroid Belt • The asteroid belt is a region between the planets Mars and Jupiter. • In this region thousands of rocky objects orbit the Sun. • They range in size from tiny dust like particles to the dwarf planet Ceres. • They are too small to considered planets but are sometimes called planetoids. © 2014 Brilliant Classes by Piyush Asteroid belt © 2014 Brilliant Classes by Piyush Kuiper belt • The Kuiper belt is a region of thousands of small bodies that exists outside the orbit of the planets. • Objects in the Kuiper belt consist of "ices" such as ammonia, water, and methane. © 2014 Brilliant Classes by Piyush Kuiper belt © 2014 Brilliant Classes by Piyush Oort cloud • The Oort cloud exists much further out than the Kuiper belt. • Around a thousand times as far away from the Sun. • Up to now scientists have only guessed at the existence of the Oort cloud which they think consists of thousands of small ice objects. • The Oort cloud is at the very edge of the Solar System. © 2014 Brilliant Classes by Piyush Oort cloud © 2014 Brilliant Classes by Piyush Milky Way • The Solar System is part of a bigger grouping of stars called a galaxy. • Our galaxy is the Milky Way. • The Solar System orbits around the center of the Milky Way. • Scientists estimate there are around 200 billion stars in the Milky Way galaxy. © 2014 Brilliant Classes by Piyush Milky Way © 2014 Brilliant Classes by Piyush • Don’t forget to give your valuable comments / feedbacks after downloading this module. • Visit my store an follow me on http://www.teacherspayteachers.com/ Store/Brilliant-Classes-By-Piyush • • http://www.pinterest.com/piyume06/ brilliant- classes-piyush/ © 2014 Brilliant Classes by Piyush .
Recommended publications
  • Models of a Protoplanetary Disk Forming In-Situ the Galilean And
    Models of a protoplanetary disk forming in-situ the Galilean and smaller nearby satellites before Jupiter is formed Dimitris M. Christodoulou1, 2 and Demosthenes Kazanas3 1 Lowell Center for Space Science and Technology, University of Massachusetts Lowell, Lowell, MA, 01854, USA. 2 Dept. of Mathematical Sciences, Univ. of Massachusetts Lowell, Lowell, MA, 01854, USA. E-mail: [email protected] 3 NASA/GSFC, Laboratory for High-Energy Astrophysics, Code 663, Greenbelt, MD 20771, USA. E-mail: [email protected] March 5, 2019 ABSTRACT We fit an isothermal oscillatory density model of Jupiter’s protoplanetary disk to the present-day Galilean and other nearby satellites and we determine the radial scale length of the disk, the equation of state and the central density of the primordial gas, and the rotational state of the Jovian nebula. Although the radial density profile of Jupiter’s disk was similar to that of the solar nebula, its rotational support against self-gravity was very low, a property that also guaranteed its long-term stability against self-gravity induced instabilities for millions of years. Keywords. planets and satellites: dynamical evolution and stability—planets and satellites: formation—protoplanetary disks 1. Introduction 2. Intrinsic and Oscillatory Solutions of the Isothermal Lane-Emden Equation with Rotation In previous work (Christodoulou & Kazanas 2019a,b), we pre- sented and discussed an isothermal model of the solar nebula 2.1. Intrinsic Analytical Solutions capable of forming protoplanets long before the Sun was actu- The isothermal Lane-Emden equation (Lane 1869; Emden 1907) ally formed, very much as currently observed in high-resolution with rotation (Christodoulou & Kazanas 2019a) takes the form (∼1-5 AU) observations of protostellar disks by the ALMA tele- of a second-order nonlinear inhomogeneous equation, viz.
    [Show full text]
  • The Moons of Jupiter – Orbital Synchrony 3
    The Moons of Jupiter – Orbital Synchrony 3 The figure above shows the orbits of many of Jupiter's numerous satellites. Each of these ‘moons’ orbits Jupiter in a different number of days. The image to the right shows the appearance of one of Jupiter’s moons Callisto. The orbit periods of many of the moons have simple relationships between them. When Jupiter’s moon Ganymede orbits 1/2 way around Jupiter, Jupiter's moon Europa orbits Jupiter once. When Jupiter’s moon Leda orbits Jupiter once, Ganymede orbits Jupiter 34 times. When Jupiter's moon Leda orbits Jupiter five times, the more distant moon Thelxinoe orbits Jupiter twice. When Leda orbits Jupiter three times, the moon Kalyke orbits Jupiter once. Example: 1/2 x Ganymede = 1 x Europa, so in the time it takes Europa to go once around Jupiter, Ganymede goes only ½ way around in its orbit. Problem 1 - How many times does Ganymede orbit Jupiter in the time it takes Europa to orbit six times? Problem 2 – How many times does Leda orbit Jupiter in the time it takes Ganymede to orbit Jupiter 6 times? Problem 3 - How many orbits will Thelxinoe have to complete around Jupiter before Kalyke orbits exactly five times? Space Math http://spacemath.gsfc.nasa.gov Answer Key 3 Problem 1 - How many times does Ganymede orbit Jupiter in the time it takes Europa to orbit six times? Answer: The information says that Europa orbits once when Ganymede orbits 1/2 times, so 1 x Europa = 1/2 x Ganymede and so 2 x Europa = 1 x Ganymede.
    [Show full text]
  • Astrometric Positions for 18 Irregular Satellites of Giant Planets from 23
    Astronomy & Astrophysics manuscript no. Irregulares c ESO 2018 October 20, 2018 Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations,⋆,⋆⋆,⋆⋆⋆,⋆⋆⋆⋆ A. R. Gomes-Júnior1, M. Assafin1,†, R. Vieira-Martins1, 2, 3,‡, J.-E. Arlot4, J. I. B. Camargo2, 3, F. Braga-Ribas2, 5,D.N. da Silva Neto6, A. H. Andrei1, 2,§, A. Dias-Oliveira2, B. E. Morgado1, G. Benedetti-Rossi2, Y. Duchemin4, 7, J. Desmars4, V. Lainey4, W. Thuillot4 1 Observatório do Valongo/UFRJ, Ladeira Pedro Antônio 43, CEP 20.080-090 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 2 Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil e-mail: [email protected] 3 Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil 4 Institut de mécanique céleste et de calcul des éphémérides - Observatoire de Paris, UMR 8028 du CNRS, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 5 Federal University of Technology - Paraná (UTFPR / DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil 6 Centro Universitário Estadual da Zona Oeste, Av. Manual Caldeira de Alvarenga 1203, CEP 23.070-200 Rio de Janeiro RJ, Brazil 7 ESIGELEC-IRSEEM, Technopôle du Madrillet, Avenue Galilée, 76801 Saint-Etienne du Rouvray, France Received: Abr 08, 2015; accepted: May 06, 2015 ABSTRACT Context. The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured.
    [Show full text]
  • The Effect of Jupiter\'S Mass Growth on Satellite Capture
    A&A 414, 727–734 (2004) Astronomy DOI: 10.1051/0004-6361:20031645 & c ESO 2004 Astrophysics The effect of Jupiter’s mass growth on satellite capture Retrograde case E. Vieira Neto1;?,O.C.Winter1, and T. Yokoyama2 1 Grupo de Dinˆamica Orbital & Planetologia, UNESP, CP 205 CEP 12.516-410 Guaratinguet´a, SP, Brazil e-mail: [email protected] 2 Universidade Estadual Paulista, IGCE, DEMAC, CP 178 CEP 13.500-970 Rio Claro, SP, Brazil e-mail: [email protected] Received 13 June 2003 / Accepted 12 September 2003 Abstract. Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L1 indicates that mass accretion provides an increase of the confinement region (delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M . We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R a 400 R and 0 e 0:5. The results give Jupiter’s mass at the X moment when the particle escapes from the planet.
    [Show full text]
  • The Convention Ear 58 (Y)Ears of Telling It Like It Isn’T!
    The Convention Ear 58 (Y)Ears of Telling It Like It Isn’t! Wednesday, July 25, 2018 Volume LIX, Issue III 25 Hour Convention Coverage Astronomers, Classicists Scramble to Invent Twelve More Stories About Zeus in Order to Name New Moons of Jupiter That’s Entertainment! Results With the recent discovery of twelve new moons around Jupiter, astronomers Congratulations to the following dele- and classicists have put aside their differences (they’ve agreed to spell it gates who have been selected to per- “Jupiter” not “Iuppiter”) to take on the challenge of naming the celestial bod- ies. As is tradition, the new moons will be named after various loves the king form in That's Entertainment! of the gods was said to have had; the only problem is, after 53 moons, we’ve Soren Adams (KY) run out of names. Madelyn Bedard & Ruth Weaver (MA) “This is a different kind of nomenclature problem than what we’re used to,” Cameron Crowley (TX) said astronomer Dr. Joey Chatelain, who looks at the sky for a living. “We’ve Sophia Dort (VA) already used Metis, Adrastea, Amalthea, Thebe, Io, Europa, Ganymede, Cal- Jeffrey Frenkel-Popell (CA) listo,” <we left at this point, did laundry, got lunch, then came back - the list Keon Honaryar (CA) was still going> “... Sinope, Sponde, Autonoe, Megaclite, and S/2003 J 2. We Kiana Hu (CA) simply don’t have any more names to use.” Illinois Dance Troupe (IL) To solve this problem, astronomers have turned to classicists for help. “The Owen Lockwood (OH) answer is simple,” said one leading Classics professor, who wished to remain Akhila Nataraj (FL) anonymous.
    [Show full text]
  • CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
    CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6)
    [Show full text]
  • Pausanias' Description of Greece
    BONN'S CLASSICAL LIBRARY. PAUSANIAS' DESCRIPTION OF GREECE. PAUSANIAS' TRANSLATED INTO ENGLISH \VITTI NOTES AXD IXDEX BY ARTHUR RICHARD SHILLETO, M.A., Soiiii'tinie Scholar of Trinity L'olltge, Cambridge. VOLUME IT. " ni <le Fnusnnias cst un homme (jui ne mnnquo ni de bon sens inoins a st-s tlioux." hnniie t'oi. inais i}iii rn>it ou au voudrait croire ( 'HAMTAiiNT. : ftEOROE BELL AND SONS. YOUK STIIKKT. COVKNT (iAKDKX. 188t). CHISWICK PRESS \ C. WHITTINGHAM AND CO., TOOKS COURT, CHANCEKV LANE. fA LC >. iV \Q V.2- CONTEXTS. PAGE Book VII. ACHAIA 1 VIII. ARCADIA .61 IX. BtEOTIA 151 -'19 X. PHOCIS . ERRATA. " " " Volume I. Page 8, line 37, for Atte read Attes." As vii. 17. 2<i. (Catullus' Aft is.) ' " Page 150, line '22, for Auxesias" read Anxesia." A.-> ii. 32. " " Page 165, lines 12, 17, 24, for Philhammon read " Philanimon.'' " " '' Page 191, line 4, for Tamagra read Tanagra." " " Pa ire 215, linu 35, for Ye now enter" read Enter ye now." ' " li I'aijf -J27, line 5, for the Little Iliad read The Little Iliad.'- " " " Page ^S9, line 18, for the Babylonians read Babylon.'' " 7 ' Volume II. Page 61, last line, for earth' read Earth." " Page 1)5, line 9, tor "Can-lira'" read Camirus." ' ; " " v 1'age 1 69, line 1 , for and read for. line 2, for "other kinds of flutes "read "other thites.'' ;< " " Page 201, line 9. for Lacenian read Laeonian." " " " line 10, for Chilon read Cliilo." As iii. 1H. Pago 264, " " ' Page 2G8, Note, for I iad read Iliad." PAUSANIAS. BOOK VII. ACIIAIA.
    [Show full text]
  • Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D
    47th Lunar and Planetary Science Conference (2016) 2676.pdf Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D. Nesvorny3, 1Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria, Australia [email protected], 2SETI Institute, Mountain View, California, USA, 3Southwest Research Institute, Department of Space Studies, Boulder, CO. USA. Introduction: Surrounding Jupiter there are multi- Results: ple satellites, 67 known to-date. The most recent classi- fication system [1,2], based on orbital characteristics, uses the largest member of the group as the name and example. The closest group to Jupiter is the prograde Amalthea group, 4 small satellites embedded in a ring system. Moving outwards there are the famous Galilean moons, Io, Europa, Ganymede and Callisto, whose mass is similar to terrestrial planets. The final and largest group, is that of the outer Irregular satel- lites. Those irregulars that show a prograde orbit are closest to Jupiter and have previously been classified into three families [2], the Themisto, Carpo and Hi- malia groups. The remainder of the irregular satellites show a retrograde orbit, counter to Jupiter's rotation. Based on similarities in semi-major axis (a), inclination (i) and eccentricity (e) these satellites have been grouped into families [1,2]. In order outward from Jupiter they are: Ananke family (a 2.13x107 km ; i 148.9o; e 0.24); Carme family (a 2.34x107 km ; i 164.9o; e 0.25) and the Pasiphae family (a 2:36x107 km ; i 151.4o; e 0.41). There are some irregular satellites, recently discovered in 2003 [3], 2010 [4] and 2011[5], that have yet to be named or officially classified.
    [Show full text]
  • PDS4 Context List
    Target Context List Name Type LID 136108 HAUMEA Planet urn:nasa:pds:context:target:planet.136108_haumea 136472 MAKEMAKE Planet urn:nasa:pds:context:target:planet.136472_makemake 1989N1 Satellite urn:nasa:pds:context:target:satellite.1989n1 1989N2 Satellite urn:nasa:pds:context:target:satellite.1989n2 ADRASTEA Satellite urn:nasa:pds:context:target:satellite.adrastea AEGAEON Satellite urn:nasa:pds:context:target:satellite.aegaeon AEGIR Satellite urn:nasa:pds:context:target:satellite.aegir ALBIORIX Satellite urn:nasa:pds:context:target:satellite.albiorix AMALTHEA Satellite urn:nasa:pds:context:target:satellite.amalthea ANTHE Satellite urn:nasa:pds:context:target:satellite.anthe APXSSITE Equipment urn:nasa:pds:context:target:equipment.apxssite ARIEL Satellite urn:nasa:pds:context:target:satellite.ariel ATLAS Satellite urn:nasa:pds:context:target:satellite.atlas BEBHIONN Satellite urn:nasa:pds:context:target:satellite.bebhionn BERGELMIR Satellite urn:nasa:pds:context:target:satellite.bergelmir BESTIA Satellite urn:nasa:pds:context:target:satellite.bestia BESTLA Satellite urn:nasa:pds:context:target:satellite.bestla BIAS Calibrator urn:nasa:pds:context:target:calibrator.bias BLACK SKY Calibration Field urn:nasa:pds:context:target:calibration_field.black_sky CAL Calibrator urn:nasa:pds:context:target:calibrator.cal CALIBRATION Calibrator urn:nasa:pds:context:target:calibrator.calibration CALIMG Calibrator urn:nasa:pds:context:target:calibrator.calimg CAL LAMPS Calibrator urn:nasa:pds:context:target:calibrator.cal_lamps CALLISTO Satellite urn:nasa:pds:context:target:satellite.callisto
    [Show full text]
  • 02. Solar System (2001) 9/4/01 12:28 PM Page 2
    01. Solar System Cover 9/4/01 12:18 PM Page 1 National Aeronautics and Educational Product Space Administration Educators Grades K–12 LS-2001-08-002-HQ Solar System Lithograph Set for Space Science This set contains the following lithographs: • Our Solar System • Moon • Saturn • Our Star—The Sun • Mars • Uranus • Mercury • Asteroids • Neptune • Venus • Jupiter • Pluto and Charon • Earth • Moons of Jupiter • Comets 01. Solar System Cover 9/4/01 12:18 PM Page 2 NASA’s Central Operation of Resources for Educators Regional Educator Resource Centers offer more educators access (CORE) was established for the national and international distribution of to NASA educational materials. NASA has formed partnerships with universities, NASA-produced educational materials in audiovisual format. Educators can museums, and other educational institutions to serve as regional ERCs in many obtain a catalog and an order form by one of the following methods: States. A complete list of regional ERCs is available through CORE, or electroni- cally via NASA Spacelink at http://spacelink.nasa.gov/ercn NASA CORE Lorain County Joint Vocational School NASA’s Education Home Page serves as a cyber-gateway to informa- 15181 Route 58 South tion regarding educational programs and services offered by NASA for the Oberlin, OH 44074-9799 American education community. This high-level directory of information provides Toll-free Ordering Line: 1-866-776-CORE specific details and points of contact for all of NASA’s educational efforts, Field Toll-free FAX Line: 1-866-775-1460 Center offices, and points of presence within each State. Visit this resource at the E-mail: [email protected] following address: http://education.nasa.gov Home Page: http://core.nasa.gov NASA Spacelink is one of NASA’s electronic resources specifically devel- Educator Resource Center Network (ERCN) oped for the educational community.
    [Show full text]
  • Liminal Leda: a Conversation About Art, Poetry, and Vague Translations of Sex Molly Pistrang [email protected]
    Connecticut College Digital Commons @ Connecticut College English Honors Papers English Department 2013 Liminal Leda: A Conversation about Art, Poetry, and Vague Translations of Sex Molly Pistrang [email protected] Follow this and additional works at: http://digitalcommons.conncoll.edu/enghp Part of the Classical Literature and Philology Commons, History of Art, Architecture, and Archaeology Commons, and the Literature in English, British Isles Commons Recommended Citation Pistrang, Molly, "Liminal Leda: A Conversation about Art, Poetry, and Vague Translations of Sex" (2013). English Honors Papers. 12. http://digitalcommons.conncoll.edu/enghp/12 This Honors Paper is brought to you for free and open access by the English Department at Digital Commons @ Connecticut College. It has been accepted for inclusion in English Honors Papers by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Liminal Leda: A Conversation about Art, Poetry, and Vague Translations of Sex An Honors Thesis Presented by Molly Alyssa Pistrang to The Department of Literatures in English in partial fulfillment of the requirements for Honors in the Major Field Connecticut College New London, Connecticut May 2013 Dedication To Leda, whoever you are Acknowledgments First, I want to thank Professor John Gordon, an incredible professor and man. Through him, my eyes have been opened to language in a way I never knew possible. As my thesis advisor, he directed me and also motivated me to push myself. I cannot overestimate his influence on my education and am forever grateful for the honor of working with him.
    [Show full text]
  • + View the NASA Portal + Nearearth Object (NEO) Program Planetary Satellite Discovery Circumstances the Tables B
    27/05/2015 Planetary Satellite Discovery Circumstances + View the NASA Portal Search JPL + Near­Earth Object (NEO) Program Planetary Satellite Discovery Circumstances The tables below show the discovery circumstances of planetary satellites and satellites of Pluto officially recognized by the International Astronomical Union (IAU). A total of 177 planetary satellites (including those of Pluto but not Earth) are represented below. References are listed where known. These data were last updated 2015­ Mar­09. IAU IAU provisional year discoverer(s)/spacecraft mission references number name designation discovered Satellites of Mars: 2 I Phobos 1877 A. Hall II Deimos 1877 A. Hall Satellites of Jupiter: 67 I Io 1610 Galileo II Europa 1610 Galileo III Ganymede 1610 Galileo IV Callisto 1610 Galileo V Amalthea 1892 E.E. Barnard VI Himalia 1904 C. Perrine VII Elara 1905 C. Perrine VIII Pasiphae 1908 P. Melotte IX Sinope 1914 S.B. Nicholson X Lysithea 1938 S.B. Nicholson XI Carme 1938 S.B. Nicholson XII Ananke 1951 S.B. Nicholson XIII Leda 1974 C. Kowal XIV Thebe S/1979 J2 1980 Voyager Science Team XV Adrastea S/1979 J1 1979 Voyager Science Team XVI Metis S/1979 J3 1980 Voyager Science Team XVII Callirrhoe S/1999 J1 1999 J.V. Scotti, T.B. Spahr, IAUC 7460 R.S. McMillan, J.A. Larsen, J. Montani, A.E. Gleason, T. Gehrels XVIII Themisto S/1975 J1 2000 S.S. Sheppard, D.C. Jewitt, IAUC 7525 S/2000 J1 Y. Fernandez, G. Magnier XIX Megaclite S/2000 J8 2000 S.S. Sheppard, D.C. Jewitt, IAUC 7555 Y.
    [Show full text]