The Convention Ear 58 (Y)Ears of Telling It Like It Isn’T!

Total Page:16

File Type:pdf, Size:1020Kb

The Convention Ear 58 (Y)Ears of Telling It Like It Isn’T! The Convention Ear 58 (Y)Ears of Telling It Like It Isn’t! Wednesday, July 25, 2018 Volume LIX, Issue III 25 Hour Convention Coverage Astronomers, Classicists Scramble to Invent Twelve More Stories About Zeus in Order to Name New Moons of Jupiter That’s Entertainment! Results With the recent discovery of twelve new moons around Jupiter, astronomers Congratulations to the following dele- and classicists have put aside their differences (they’ve agreed to spell it gates who have been selected to per- “Jupiter” not “Iuppiter”) to take on the challenge of naming the celestial bod- ies. As is tradition, the new moons will be named after various loves the king form in That's Entertainment! of the gods was said to have had; the only problem is, after 53 moons, we’ve Soren Adams (KY) run out of names. Madelyn Bedard & Ruth Weaver (MA) “This is a different kind of nomenclature problem than what we’re used to,” Cameron Crowley (TX) said astronomer Dr. Joey Chatelain, who looks at the sky for a living. “We’ve Sophia Dort (VA) already used Metis, Adrastea, Amalthea, Thebe, Io, Europa, Ganymede, Cal- Jeffrey Frenkel-Popell (CA) listo,” <we left at this point, did laundry, got lunch, then came back - the list Keon Honaryar (CA) was still going> “... Sinope, Sponde, Autonoe, Megaclite, and S/2003 J 2. We Kiana Hu (CA) simply don’t have any more names to use.” Illinois Dance Troupe (IL) To solve this problem, astronomers have turned to classicists for help. “The Owen Lockwood (OH) answer is simple,” said one leading Classics professor, who wished to remain Akhila Nataraj (FL) anonymous. “We can just make up some more stories. Nobody can keep all of James Sauls (FL) them straight, so it’s unlikely students will notice. This will be just like in the Albert Ting & Aric Ting (GA) 1960s, when we finally ran out of things to say about the Aeneid. So, we just invented ‘word pictures’ and spent decades telling people they were real and These delegates must meet with Tyler that Virgil totally meant for it to look that way on a modern page.” Heist directly after GA III in front of the stage. Bring your music, if any, on a For example, he offered an exclusive sneak peek at one idea. “We figured: USB drive. If there are any problems, Zeus would probably really love Doritos Locos Tacos from Taco Bell, so now contact him via text at 859-815-9234. there’s a myth about him transforming into a golden Toyota Prius and de- scending upon the restaurant at 3 in the morning. Call up Edith Hamilton, and Thanks to all the acts that auditioned! we’ll add it to the 2019 edition.” Daily Life Advice from the Fab Five “Stay energized for testing sessions. Gua- camole from Garden Commons mixed with a dollop of Greek yogurt and I mean, it wasn’t built in fresh cilantro is a great brain snack.” a day! Antoni 1 Competitive Certamen Scores Ask Woody With Woodrow “Woody’” Wills After Rounds 1 & 2 Hey Woody, you’re a former coach. What are your key strategies for Certamen? A: Woody wills you to play physical, play tough, and play NOVICE through any and all pain. Rd. 1 Rd. 2 Score Hey Woody, I met a cute girl and I think its JCLove. Any dance Alpha 30 135 165 move suggestion to wow the ladies? Arizona 100 55 155 A: Woody wills you to lead with the shoulders, follow Beta 0 20 20 through with the head, finish with the toenails. California 110* 40 150 DC 180 145 325 Hey Woody, I took your Certamen advice and I’m seeing only Florida 190 230 420 the color blue. Should I seek medical assistance? Georgia 45 60 105 A: Woody wills you to keep playing the game the right way, Illinois 20 85 105 son. Indiana 25 30 55 Kentucky 30 10 40 Hey Woody, who’s your favorite Roman? Massachusetts 165 205 370 A: Horatius Cocles, talk about sacrificing your body for the New Hampshire 85* 115* 200 good of the team. North Carolina 50 55 105 Hey Woody, what’s the proper way to wear shorts? Ohio 95 65 160 A: High and tight, just like we did in the 60s. (Editor’s note, Tennessee 60 30 90 if you wear shorts at this length you will be sent home at Texas 165 130 295 your parents’ expense) Virginia 125 130 255 Wisconsin 45 95 140 INTERMEDIATE INTERMEDIATE ADVANCED Rd. 1 Rd. 2 Score Rd. 1 Rd. 2 Score California 80* 45 125 Alabama 20 30 50 Alpha 10 135* 145 Delta 75 30 105 Beta 60 70 130 Florida 130 220 350 California 140* 120 260 Gamma 20 20 40 Colorado 100 30 130 Georgia 265 75 340 DC 100 30 130 Illinois 145 205 350 Florida 235 240* 475 Indiana 25 40 65 Georgia 105 20 125 Louisiana 45 10 55 Illinois 100 90 190 Maryland 75 45 120 Indiana 35 10 45 Kentucky 20 30 50 Massachusetts 95 165 260 Louisiana 0 20 20 North Carolina 35 130 165 Massachusetts 260 185 445 New Hampshire 200* 105* 305 New Hampshire 205* 90 295 New Jersey 30 10 40 North Carolina 10 45 55 Ohio 165 50 215 Ohio 255 155* 410 Oklahoma 0 0 0 Oklahoma 0 0 0 Texas 115 165 280 Tennessee 65 50 115 Texas 170 240 410 Virginia 135* 90* 225 Virginia 325* 175 500 Wisconsin 185 195* 380 Wisconsin 145 265* 410 *- Adjudicated Score 2 Meet the Candidates 1: What would the name of your debut album be? 2: Which Skittle flavor is the best? 3: What is your favorite show to binge watch? Name: Garrett Frye-Mason State delegation: New Mexico Office sought: President Number of NJCL conventions attended: 4 1. “Breaking Bad: The Musical!” I live in Albuquerque. Catch my band “Garrett and the Wolf Gang” singing those sweet tunes with my dogs howling back up. 2. I don’t eat Skittles, so I’m going to have to go with Danny DeVito. 3. The only answer to this question is The Office. - Garrett - Michael Scott Name: Natasha Panduwawala State delegation: Maryland Office sought: President Number of NJCL conventions attended: 3 1. “Tasha From the Block” because “no matter where I go, I know where I came from.” 2. Pineapple Passion (that blue, tropical one) is the best Skittle because I can feel like I’m in the tropics without actually boarding a plane. 3. This Is Us – it is so realistic and gets you in ALL of your feels. Name: Aleah Malik State delegation: Illinois Office sought: 1st Vice President Number of NJCL conventions attended: 3 1. “Aleah iacta est” 2. Strawberry – not too bold, not too mild, has an authentic fruity flavor, and leaves a nice aftertaste. 3. To be honest, I’m more of a podcast person, but I do binge Black Mirror. Name: Shir Bloch State delegation: WI Office sought: NJCL 1st VP Number of NJCL conventions attended: this is my 3rd 1. My debut album would be called "Sleepless" because I tend to get super excited about things and then have trouble falling asleep. To be completely honest, most of those things are Latin! 2. The yellow skittles are the best. Try them and put my theory to the test. 3. I have been watching Seinfeld recently, although I also love Broadchurch and The Crown. Don’t forget to submit your personals for $1 in the NJCL Office, which is located in Armstrong Room 1082! 3 Meet the Candidates 1: What would the name of your debut album be? 2: Which Skittle flavor is the best? 3: What is your favorite show to binge watch? Name: Ellie Davis State delegation: Louisiana Office sought: 2nd Vice President Number of NJCL conventions attended: 2, going on 3 1. “If Rainbows Made a Sound” – I’m often described as a SPIRITED person, and also if I were a goddess, I would be this. 2. All of them together. You’ve got to taste the whole rainbow. 3. Currently New Girl, but Sherlock is my all-time favorite. Name: Michaela Phan State delegation: New Hampshire Office sought: 2nd Vice President Number of NJCL conventions attended: 3 1. “Michaelalala” because it’s light-hearted and doesn’t reveal how bad at singing I am. 2. The red one because it’s a classic! 3. How I Met Your Mother because the friend group dynamic is iconic, and Barney Stinson’s character never gets old! Name: Natalie Hilderbrand State delegation: California Office sought: Communications Coordinator Number of NJCL conventions attended: 2 1. “Coco Pebbles” 2. Strawberry Starfruit because it’s pink! 3. Gossip Girl xoxo Name: Elana Sanders-Braxton State delegation: Missouri Office sought: Communications Coordinator Number of NJCL conventions attended: 2 1. “Road Work Ahead.” For one, it’s my favorite Vine, and it’s a good way to say that the contents of the album probably need some work. 2. Orange! It’s bright, citrusy, and doesn’t taste like soap. 3. Queer Eye. 4 Meet the Candidates 1: What would the name of your debut album be? 2: Which Skittle flavor is the best? 3: What is your favorite show to binge watch? Name: Sam Acosta State delegation: Indiana Office sought: Parliamentarian Number of NJCL conventions attended: 3 1. “Dropped Twelve” - If you want to know the story behind this, come talk to me in person. 2. Green, because it fuels my power. 3. It’s a hard tie between The Walking Dead and Peppa Pig.
Recommended publications
  • The Effect of Jupiter\'S Mass Growth on Satellite Capture
    A&A 414, 727–734 (2004) Astronomy DOI: 10.1051/0004-6361:20031645 & c ESO 2004 Astrophysics The effect of Jupiter’s mass growth on satellite capture Retrograde case E. Vieira Neto1;?,O.C.Winter1, and T. Yokoyama2 1 Grupo de Dinˆamica Orbital & Planetologia, UNESP, CP 205 CEP 12.516-410 Guaratinguet´a, SP, Brazil e-mail: [email protected] 2 Universidade Estadual Paulista, IGCE, DEMAC, CP 178 CEP 13.500-970 Rio Claro, SP, Brazil e-mail: [email protected] Received 13 June 2003 / Accepted 12 September 2003 Abstract. Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L1 indicates that mass accretion provides an increase of the confinement region (delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M . We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R a 400 R and 0 e 0:5. The results give Jupiter’s mass at the X moment when the particle escapes from the planet.
    [Show full text]
  • CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
    CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6)
    [Show full text]
  • Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D
    47th Lunar and Planetary Science Conference (2016) 2676.pdf Cladistical Analysis of the Jovian Satellites. T. R. Holt1, A. J. Brown2 and D. Nesvorny3, 1Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria, Australia [email protected], 2SETI Institute, Mountain View, California, USA, 3Southwest Research Institute, Department of Space Studies, Boulder, CO. USA. Introduction: Surrounding Jupiter there are multi- Results: ple satellites, 67 known to-date. The most recent classi- fication system [1,2], based on orbital characteristics, uses the largest member of the group as the name and example. The closest group to Jupiter is the prograde Amalthea group, 4 small satellites embedded in a ring system. Moving outwards there are the famous Galilean moons, Io, Europa, Ganymede and Callisto, whose mass is similar to terrestrial planets. The final and largest group, is that of the outer Irregular satel- lites. Those irregulars that show a prograde orbit are closest to Jupiter and have previously been classified into three families [2], the Themisto, Carpo and Hi- malia groups. The remainder of the irregular satellites show a retrograde orbit, counter to Jupiter's rotation. Based on similarities in semi-major axis (a), inclination (i) and eccentricity (e) these satellites have been grouped into families [1,2]. In order outward from Jupiter they are: Ananke family (a 2.13x107 km ; i 148.9o; e 0.24); Carme family (a 2.34x107 km ; i 164.9o; e 0.25) and the Pasiphae family (a 2:36x107 km ; i 151.4o; e 0.41). There are some irregular satellites, recently discovered in 2003 [3], 2010 [4] and 2011[5], that have yet to be named or officially classified.
    [Show full text]
  • Perfect Little Planet Educator's Guide
    Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet.
    [Show full text]
  • Survey of Jovian Irregular Moons with Ivo (Io Volcano Observer)
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1841.pdf SURVEY OF JOVIAN IRREGULAR MOONS WITH IVO (IO VOLCANO OBSERVER). T. Denk1, A.S. McEwen2, J. Helbert1, and the IVO Team. 1DLR Berlin ([email protected]), 2LPL, University of Arizona. Introduction. This talk combines three different quantity. (Of course, with respect to mass, they topics: (1) A quick introduction into the IVO mission, a contribute very little to the Jovian moon system.) spacecraft proposed to orbit Jupiter in the 2030's decade Irregular moons are believed to be remnants from [1][2]; (2) Jupiter is host of at least 71, and likely many catastrophic collisions of progenitor objects suspected hundred [3] outer, so-called irregular moons with a size to have been trapped by Jupiter in the early history of >1 km which are poorly explored so far; (3) the Cassini the Solar system. Many details and characteristics, spacecraft performed an observation campaign of including their region of origin and their relationship to Saturn's irregular moons in the 2010 decade [4]. other small bodies, are not known [8]. Cassini has proven the feasibility and strong The Cassini observation potentials of irregular-moon observations by spacecraft campaign of Saturn's irregular orbiting the center planet of irregular moons. Such a moons was the first irregular-moon campaign is thus proposed as part of the Science inventory by a spacecraft orbiting Enhancement Option (SEO) "Jupiter system science" of the host planet [4][9]. Especially in the IVO mission. the second half of the mission, IVO (Io Volcano Observer) is approximately one or two days per a NASA Discovery mission cur- orbit were used to observe Saturn's irregular moons, rently under Phase A study.
    [Show full text]
  • 385557Main Jupiter Facts1(2).Pdf
    Jupiter Ratio (Jupiter/Earth) Io Europa Ganymede Callisto Metis Mass 1.90 x 1027 kg 318 15 3 Adrastea Amalthea Thebe Themisto Leda Volume 1.43 x 10 km 1320 National Aeronautics and Space Administration Equatorial Radius 71,492 km 11.2 Himalia Lysithea63 ElaraMoons S/2000 and Counting! Carpo Gravity 24.8 m/s2 2.53 Jupiter Euporie Orthosie Euanthe Thyone Mneme Mean Density 1330 kg/m3 0.240 Harpalyke Hermippe Praxidike Thelxinoe Distance from Sun 7.79 x 108 km 5.20 Largest, Orbit Period 4333 days 11.9 Helike Iocaste Ananke Eurydome Arche Orbit Velocity 13.1 km/sec 0.439 Autonoe Pasithee Chaldene Kale Isonoe Orbit Eccentricity 0.049 2.93 Fastest,Aitne Erinome Taygete Carme Sponde Orbit Inclination 1.3 degrees Kalyke Pasiphae Eukelade Megaclite Length of Day 9.93 hours 0.414 Strongest Axial Tilt 3.13 degrees 0.133 Sinope Hegemone Aoede Kallichore Callirrhoe Cyllene Kore S/2003 J2 • Composition: Almost 90% hydrogen, 10% helium, small amounts S/2003of ammonia, J3methane, S/2003 ethane andJ4 water S/2003 J5 • Jupiter is the largest planet in the solar system, in fact all the otherS/2003 planets J9combined S/2003 are not J10 as large S/2003 as Jupiter J12 S/2003 J15 S/2003 J16 S/2003 J17 • Jupiter spins faster than any other planet, taking less thanS/2003 10 hours J18 to rotate S/2003 once, which J19 causes S/2003 the planet J23 to be flattened by 6.5% relative to a perfect sphere • Jupiter has the strongest planetary magnetic field in the solar system, if we could see it from Earth it would be the biggest object in the sky • The Great Red Spot,
    [Show full text]
  • The Moons of Jupiter Pdf, Epub, Ebook
    THE MOONS OF JUPITER PDF, EPUB, EBOOK Alice Munro | 256 pages | 09 Jun 2009 | Vintage Publishing | 9780099458364 | English | London, United Kingdom The Moons of Jupiter PDF Book Lettere Italiane. It is surrounded by an extremely thin atmosphere composed of carbon dioxide and probably molecular oxygen. Named after Paisphae, which has a mean radius of 30 km, these satellites are retrograde, and are also believed to be the result of an asteroid that was captured by Jupiter and fragmented due to a series of collisions. Many are believed to have broken up by mechanical stresses during capture, or afterward by collisions with other small bodies, producing the moons we see today. Jupiter's Racing Stripes. If it does, then Europa may have an ocean with more than twice as much liquid water as all of Earth's oceans combined. Neither your address nor the recipient's address will be used for any other purpose. It is roughly 40 km in diameter, tidally-locked, and highly-asymmetrical in shape with one of the diameters being almost twice as large as the smallest one. June 10, Ganymede is the largest satellite in our solar system. Bibcode : AJ Adrastea Amalthea Metis Thebe. Cameras on Voyager actually captured volcanic eruptions in progress. Your Privacy This site uses cookies to assist with navigation, analyse your use of our services, and provide content from third parties. Weighing up the evidence on Io, Europa, Ganymede and Callisto. Retrieved 8 January Other evidence comes from double-ridged cracks on the surface. Those that are grouped into families are all named after their largest member.
    [Show full text]
  • Astrophysics on the Orbits of the Outer Satellites of Jupiter
    A&A 401, 763–772 (2003) Astronomy DOI: 10.1051/0004-6361:20030174 & c ESO 2003 Astrophysics On the orbits of the outer satellites of Jupiter T. Yokoyama1,M.T.Santos1,G.Cardin1, and O. C. Winter2 1 Universidade Estadual Paulista, IGCE - DEMAC Caixa Postal 178, CEP 13.500-970 Rio Claro (S˜ao Paulo), Brasil 2 Universidade Estadual Paulista, FEG, Grupo de Dinˆamica Orbital e Planetologia da UNESP, Caixa Postal 205, CEP 12.516-410 Guaratinguet´a(S˜ao Paulo), Brasil e-mail: [email protected] Received 11 September 2002 / Accepted 31 January 2003 Abstract. In this work we study the basic aspects concerning the stability of the outer satellites of Jupiter. Including the effects of the four giant planets and the Sun we study a large grid of initial conditions. Some important regions where satellites cannot survive are found. Basically these regions are due to Kozai and other resonances. We give an analytical explanation for the libration of the pericenters $ $J . Another different center is also found. The period and amplitude of these librations are quite sensitive to initial conditions,− so that precise observational data are needed for Pasiphae and Sinope. The effect of Jupiter’s mass variation is briefly presented. This effect can be responsible for satellite capture and also for locking $ $ in temporary − J libration. Key words. planets and satellites: general – solar system: general 1. Introduction Within the last two years a significant number of irregu- lar Jupiter satellites has been discovered (Sheppard & Jewitt The recent discovery of outer and irregular satellites of Uranus 2002).
    [Show full text]
  • Space Theme Circle Time Ideas
    Space Crescent Black Space: Sub-themes Week 1: Black/Crescent EVERYWHERE! Introduction to the Milky Way/Parts of the Solar System(8 Planets, 1 dwarf planet and sun) Week 2: Continue with Planets Sun and Moon Week 3: Comets/asteroids/meteors/stars Week 4: Space travel/Exploration/Astronaut Week 5: Review Cooking Week 1: Cucumber Sandwiches Week 2: Alien Playdough Week 3: Sunshine Shake Week 4: Moon Sand Week 5: Rocket Shaped Snack Cucumber Sandwich Ingredients 1 carton (8 ounces) spreadable cream cheese 2 teaspoons ranch salad dressing mix (dry one) 12 slices mini bread 2 to 3 medium cucumbers, sliced, thinly Let the children take turns mixing the cream cheese and ranch salad dressing mix. The children can also assemble their own sandwiches. They can spread the mixture themselves on their bread with a spoon and can put the cucumbers on themselves. Sunshine Shakes Ingredients and items needed: blender; 6 ounce can of unsweetened frozen orange juice concentrate, 3/4 cup of milk, 3/4 cup of water, 1 teaspoon of vanilla and 6 ice cubes. Children should help you put the items in the blender. You blend it up and yum! Moon Sand Materials Needed: 6 cups play sand (you can purchased colored play sand as well!); 3 cups cornstarch; 1 1/2 cups of cold water. -Have the children help scoop the corn starch and water into the table and mix until smooth. -Add sand gradually. This is very pliable sand and fun! -Be sure to store in an airtight container when not in use. If it dries, ad a few tablespoons of water and mix it in.
    [Show full text]
  • Irregular Satellites of the Giant Planets 411
    Nicholson et al.: Irregular Satellites of the Giant Planets 411 Irregular Satellites of the Giant Planets Philip D. Nicholson Cornell University Matija Cuk University of British Columbia Scott S. Sheppard Carnegie Institution of Washington David Nesvorný Southwest Research Institute Torrence V. Johnson Jet Propulsion Laboratory The irregular satellites of the outer planets, whose population now numbers over 100, are likely to have been captured from heliocentric orbit during the early period of solar system history. They may thus constitute an intact sample of the planetesimals that accreted to form the cores of the jovian planets. Ranging in diameter from ~2 km to over 300 km, these bodies overlap the lower end of the presently known population of transneptunian objects (TNOs). Their size distributions, however, appear to be significantly shallower than that of TNOs of comparable size, suggesting either collisional evolution or a size-dependent capture probability. Several tight orbital groupings at Jupiter, supported by similarities in color, attest to a common origin followed by collisional disruption, akin to that of asteroid families. But with the limited data available to date, this does not appear to be the case at Uranus or Neptune, while the situa- tion at Saturn is unclear. Very limited spectral evidence suggests an origin of the jovian irregu- lars in the outer asteroid belt, but Saturn’s Phoebe and Neptune’s Nereid have surfaces domi- nated by water ice, suggesting an outer solar system origin. The short-term dynamics of many of the irregular satellites are dominated by large-amplitude coupled oscillations in eccentricity and inclination and offer several novel features, including secular resonances.
    [Show full text]
  • Solar System Tables
    Solar System Physical Data Physical Properties of Solar System Members S o l a Equatorial Mass1 Density2 Gravity3 Albedo4 r S Diameter Earth=1 H O=1 Earth=1 y 2 s t e SUN 865,278 miles 1,392,530 km 332,946 1.41 27.9 n/a m MERCURY 3,032 miles 4,879 km 0.055 5.43 0.38 11% VENUS 7,521 miles 12,104 km 0.815 5.25 0.90 65% EARTH 7,926 miles 12,756 km 1 5.52 1.00 37% MARS 4,228 miles 6,805 km 0.107 3.95 0.38 15% JUPITER 88,844 miles 142,980 km 317.8 1.33 2.53 52% SATURN 74,900 miles5 120,540 km5 95.2 0.69 1.06 47% URANUS 31,764 miles 51,120 km 14.5 1.29 0.90 51% NEPTUNE 30,777 miles 49,530 km 17.2 1.64 1.14 41% PLUTO 1,433 miles 2,306 km 0.0025 2.03 0.08 30% 1Earth’s mass is 1.32 x 1025 pounds (5.97 x 1024 kg). 2Density per unit volume as compared to water. For comparsion, the density of alumium is 2.7 and iron is 7.7. 3Gravity at equator. 4Albedo is the amount of sunlight reflected by the Planet. 5Saturn without rings. Visible rings are approximately 170,000 miles (273,600 km) in diameter. Rotational Period Escape Oblateness2 Inclination (Planet’s Day) Velocity1 to Orbit3 SUN 25 to 35 days4 384 miles/s 617.5 km/s 0 7.2 5 ∞ MERCURY 58.7 days 2.6 miles/s 4.2 km/s 0 0.0 ∞ VENUS 243.0 days 6.5 miles/s 10.4 km/s 0 177.4 ∞ EARTH 1 day 6.96 miles/s 11.2 km/s 0.34% 23.4 ∞ MARS 24.62 hours 3.1 miles/s 5.0 km/s 0.74% 25.2 ∞ JUPITER 9.84 hours 37 miles/s 59.5 km/s 6.5% 3.1 ∞ SATURN 10.23 hours 22.1 miles/s 35.5 km/s 9.8% 25.3 ∞ URANUS 17.9 hours 13.2 miles/s 21.3 km/s 2.3% 97.9 ∞ NEPTUNE 19.2 hours 14.6 miles/s 23.5 km/s 1.7% 28.3 ∞ PLUTO 6.4 days 0.8 miles/s 1.3 km/s unknown 123 ∞ 1At equator.
    [Show full text]
  • MOONS of OUR SOLAR SYSTEM Last Updated June 8, 2017 Since
    MOONS OF OUR SOLAR SYSTEM last updated June 8, 2017 Since there are over 150 known moons in our solar system, all have been given names or designations. The problem of naming is compounded when space pictures are analyzed and new moons are discovered (or on rare occasions when spacecraft images of small, distant moons are found to be imaging flaws, and a moon is removed from the list). This is a list of the planets' known moons, with their names or other designations. If a planet has more than one moon, they are listed from the moon closest to the planet to the moon farthest from the planet. Since the naming systems overlap, many moons have more than one designation; in each case, the first identification listed is the official one. MERCURY and VENUS have no known moons. EARTH has one known moon. It has no official name. MARS has two known moons: Phobos and Deimos. ASTEROIDS (Small moons have now been found around several asteroids. In addition, a growing number of asteroids are now known to be binary, meaning two asteroids of about the same size orbiting each other. Whether there is a fundamental difference in these situations is uncertain.) JUPITER has 69 known moons. Names such as “S/2003 J2" are provisional. Metis (XVI), Adrastea (XV), Amalthea (V), Thebe (XIV), Io (I), Europa (II), Ganymede (III), Callisto (IV), Themisto (XVIII), Leda (XIII), Himalia (Hestia or VI), Lysithea (Demeter or X), Elara (Hera or VII), S/2000 J11, Carpo (XLVI), S/2003 J3, S/2003 J12, Euporie (XXXIV), S/2011 J1, S/2010 J2, S/2003 J18, S/2016 J1, Orthosie
    [Show full text]