CASTENASO'' Una Nuova Meteoriteitaliana

Total Page:16

File Type:pdf, Size:1020Kb

CASTENASO'' Una Nuova Meteoriteitaliana Quoderno di Srudi e Notizie di Storio Nqfurqle dello Romogno Quad.Studi Nal Romagn422:129-135, giugno 2006 ISSN1123-67s7 Notizie Naturalistiche FrancoMeriehi CONDRITE ORDINARIA''CASTENASO'' Una nuova meteoriteitaliana Nonostante io sia molto interessato alla conoscenza delle meraviglie della Natura e partecipi alle tante iniziative che si adoperanoper la salvaguardiadel nostro pianeta e di tutto ciò che vive in esso, mi sono reso conto che, come la grande maggioranza delle persone, ho una conoscenzaassolutamente insuffr- cientedel firmamento,dei misteri e degli equilibri dell'Universo. Sonocerto che una migliore conoscenzadi questi misteri e di questi equilibri potrebbe indurre l'Uomo ad esserepiù consapevoledella propria fragilità e più rispettosoverso la "martoriata" madre Terra, che ci manda segnali che fingiamo di non capire e ci awerte a modo suo dei tanti equilibri che si stanno rompendo. Per soddisfarele mie curiosità e migliorare le mie scarseconoscenze, qualche anno fa partecipai ad un corso di astronomiadella durata di una ventina di giorni. Quella esperienzami ha cambiato la vita, mi ha fatto capire quanto io, essere "arrogante umano e presuntuoso", fossi niente di fronte all'immensità dell'Universo.Fra l'altro, mi ha molto colpito apprendereche esistenel sistema solare, tra Marte e Giove, la fascia degli Asteroidi, composta da miliardi di pianetini (gli Asteroidi), grandi e piccoli frammenti di roccia e metallo, rimasti a vagareorbitando intomo al Sole, dai tempi della formazione del sistemasolare. Come tutti i pianeti, si sono formati, nello stessotempo e con la stessamateria, insieme al Sole, che pure stava nascendocirca quattro miliardi e mezzo di anni fa. Alcuni di questi frammenti collidendo tra loro o per altre causenon sempre accertate,escono dalla fascia degli Asteroidi ed intersecanole orbite dei pianeti intemi, venendo catturati dalla loro forzadi gravità. Quando entrano nell'atmo- sfera terrestre questemeteore si riscaldano per attrito con l'aria e si incendiano (stelle cadenti); molte si annientanoper combustione, o si polverizzano. Quelle che arrivano sulla Terra prendono il nome di meteoriti. Pare che ogni anno arriv- ino sulla Terra diverse migliaia di meteoriti pesanti oltre il chilo e fra questeun centinaio superanoil quintale. La maggior parte di esse,per fortuna, cadono nei 129 o mari che ricoprono \ % del pianeta, o in zone disabitate come i deserti l'Antartide. Pér lo più non lasciano alcuna ttaccia. Solo pochissime vengono notate e studiate dall'Uomo. Mi risultano note e catalogateoltre 30.000 meteori- grandi ti (Russel et al., 2005), costituiteda rocce,metalli od entrambi.Le più meteoriti conosciute sono elencatenella tabella 1. Le meteoriti vengono catalo- gate col nome della zona di ritrovamento dalla Meteoritical Society, massimo írguno competentea livello mondiale. Le grossemeteoriti si muovono così velo- piccole cernenteda scavare grandi crateri a seguito del loro impatto, ma le più sulla superficie terrestre senza creare danni o effetti vistosi. Il cratere arrivano "Meteor meteoritico più famoso e meglio conservato è il crater" dell'Arizona, largo 1200À e profondo circà 200 m. Questocratere si formò circa 50.000anni stimato di oltre 60 m che cadde sulla fa ier una meteórite metallica del diametro teia aduna velocità di circa 15 Km/s, liberandoun'energia equivalente all'es- plosione di un ordigno nucleare di 20 Megaton' ba allora uno dei miei più grandi desideri è stato quello di imbattermi in una copertura vegetale meteorite. Qui da noi è quasi impossibile trovarne; la impedisce di vederle ed è difficile riconoscerletra i sassicomuni, continuamente rimossi dalle alluvioni e dai cambiamenti che l'uomo attua sulla superficie ter- restre. 1. Meteoriti ferrose: (Kg) Nome Ritrovamento Classe Peso Hoba Namibia t920 Atassite 60.000 Campodel Cielo Argentina 1990 Ottaedrite 37.000 CapeYork (Ahnighito) Groenlandia 1894 Ottaedrite 3i.000 Armanty Cina I 898 Ottaedrite 23.500 Bacubirito Messico 1863 Ottaedrite 22.000 CapeYork (Agpalilik) Groenlandia 1963 Ottaedrite 20.000 Mbosi Tanzan\a 1930 Ottaedrite 16.000 Campodel Cielo Argentina t576 Ottaedrite 15.000 Willamette U.S.A. 1902 Ottaedrite 14.900 Chupaderos Messico 1854 Ottaedrite 14.100 Mundrabilla Australia 1911 Ottaedrite 12.000 Morito Messico 1600 Ottaedrite 11.000 130 2. Meteoriti pietrose-ferrose. Nome Ritrovamento Anno Classe Peso(Kg) Huckitta Australia 1937 Pallasite 1.400 Krasnojarsk Russia r749 Pallasite 700 Brenham U.S.A. t947 Pallasite 450 3. Meteoriti pietrose Nome Ritrovamento Aruro Classe Peso(Kg) Jilin Cina t976 Condrite 1.770 Norton County U.S.A. t948 Acondrite 1.073 Long Island U.S.A. l89l Condrite 564 Paragould U.S.A. 1930 Condrite 371 Bjurbole Finlandia 1899 Condrite 330 Tabella 1 Le più grandi meteoriti conosciute (dati da CrIluu-t-Aro, 2005) Certamentesarebbe più facile trovarle nei deserti, aridi, infiniti ed intatti da mil- lenni, anche perché le meteoriti sono conservatebene dal clima secco che ne impediscel'ossidazione. Da alcuni anni si stannotrovando numerosemeteoriti soprattutto nelf inesplorata Antartider. La difficoltà di trovarle in Italia è dimostrata dal fatto che dal 1500 ad oggi ne sono state trovate e studiate dagli specialisti poco più di una quarantina (Tabella 2). Questo materiale extraterrestreè molto importante perché contiene i materiali originali, i "primi mattoni" da cui hanno avuto origine i pianeti, portandoci una "la testimonianza tangibile di quell'epoca. Esso rappresenta memoria dell'Universo". All'intemo delle meteoriti sono generalmentecontenute delle piccole sfere silicee, che qualcuno interpreta come i granuli della nebulosa o'presolare"fusi prima che si formasseI'asteroide generatore, risalenti ad un'e- poca anteriore alla formazione del Sole e dei pianeti, quandonello spazio esiste- "condri", va solo una nuvola immensa di "granellini" primordiali, chiamati di "condriti", "prime cui sono formate le meteoriti più interessanti,le le gocce del mondo". Affascinato dalle molte letture non ho smessodi documentarmi su quelli che io I Negli ultimi decenni il maggior numero di nuove meteoriti raccolte e studiate proviene dall'Antartide, con- tinente finora praticamente inesplorato. RussEL et al. (2005) nella lista dei ritrovamenti degli ultimi decenni, elencano 1010 meteoriti dall'Antartide su un totale mondiale di 1768. 131 (Kg) Luogo Data Classe Massa Nami (Temi) 92rd.c. Condrite Rivolta d'Adda (Cremona) 22.rrr.l49r Aerolite Valdinoce (Forlì) 26.r.1497 Aerolite 15 Castrovillari (Cosenza) 9.I.1583 Aerolite 136+ 9l Vago (Verona) 21.Vr.1668 Condrite z Albareto (Modena) 15.VII.1766 Condrite CastelnuovoBerardenga (Siena) t7.Y.r79r Condríte <3,5 Siena t6.vr.1794 Condrite <1 Fidenza (Parma) 19.IV.1808 10 Renazzo (Ferrara) 15.r.1824 Condrite Mineo (Catania) .v.1826 Pallasite 9 Trenzano (Brescia) t2.xl.1826 Condrite 5 Cereseto(Alessandria) l7.vII.l840 Condrite 5 Monte Milone (Macerata) 8.V.1846 Condrite 14,5 Agrigento 10.II.1853 Condrite 0,3-l Alessandria 2.rr.1860 Condrite <6 Motta dei Conti (Vercelli) 29.rI.1868 Condrite 3,4 Orvinio (Rieti) 31.Vm.1872 Condrite 228 Alfianello (Brescia) 16.rr.1883 Condrite 2 Assisi (Perugia) 24.V.1886 Condrite 5 Collescipoli (Terni) 3.rr.1890 Condrite 9,13+ 0,9 Yaldinizza (Pavia) 12.VII.1903 Condrite 4,5+ 11,5 Vigarano (Ferrara) 22.r.r910 Condrite Patti (Messina) t922 Siderite 56 Barcis (Pordenone) 1950 Pallasite 2,4 Messina 16.vII.1955 Condrite z Sinnai (Cagliari) 19.II.1956 Condrite 0,86 Barbianello (Pavia) 1960-61 Atassite 48 Bagnone (Massa Carrara) 1967 Siderite 1{ Masua (Cagliari) 1967 Siderite 0,013 Piancaldoli (Firenze) l0.VIII.1968 Condrite 0,667 Umbria r970 Siderite 0,2 Noventa Vicentina (Vicenza) 12.v.l97r Condrite 0,8 Torino 18.V.1988 Condrite 0,2 Argentera (Cuneo) VIII.1995 Condrite 10,2 Fermo (Ascoli Piceno) 2s.1X.1996 Condrite 0,048 Lido di Yenezia 11.IV.1999 Condrite 0,072 Tesserale2(Venezia) 1999r Condrite 0,041 Tessera3 (Venezia) 20.II.2000 Condrite 0,031 Mareson di Zoldo (Belluno) 26.rÍr.2000 Condrite 0,022 Piave (Veneto) 21.r.200r Condrite 0,120 Castenaso(Bologna) 15.VII.2003 Condrite 2005) Tabella2- Le principali meteoriti italiane (dati da Curxnluuo, IJL T È o I o tîi <r 1,. lrl, _È F, .3 o, ssiit I ! {€5 o ì =É i I È EgÉÉ € s ;:iÉ É o ^ -"Q=6 3E#Él o = 9J- 2 <i rd 6 ÉnàÉ 9t s gra* E#Éàl Zl s.i€€fll o E:'iESciEi€g i É:. FE".jPEgÈ{=$ E o sÉàg;EtFi!E I R"'eÉ E t'q:tÈ;'É ? :;gEsl lrl: Ee;;SIl F, : É.t9Etl d'i* EO* E<l ÈsÉ:CÈÈ?E l éBF is5s16;g E É, EeeItl o 1t;EEs-sgtÈ?i * EtÈ:E I z EEiiBìtè*fs E €il5c I z o 72e.ÉsE!òE1r.+ aa q =.ì6 =ÉEÈ€ÈÈÈE F#BEEI 2.2 gi; È:ÈÈE;E;s l.gsYcEI -9 l;€sÉÈ| xÉFs EÉÈ Ea!€gcEB É z2 Só $IEFÉSI à9 xì- *j;?g!F >i < lssEE;I aa- z1 Èg o; E"€3Ét z.a ùe 9T ; F gEgg IÉ:E:EI +È u o8 3 :.É5:. i,, E Éx i:ÈÉz rP È _É i 33 E ù=úa HX IE?€;ÈI E&o q ' .EÉÉ ú.2 ..; q b lÈi53il EÉ I éi:É l!-E€E€l 3'*H= =p6 l<Èay5l zú z ra*1 o Yq F9l #:ÉE xaÈ <;3t'ìt t. ldaBe'cZ ó3i É5::€€ I d Z:1 <E Z=aÉ, d troQ t ?69 q) u@Ca ÉaE fig t lsàH <É =É 133 "frammenti chiamo di stelleo lacrime del cielo". Per documentarmisulle mete- oriti sono andato per Musei, dove ho avuto talvolta l'opportunità di toccarle e prenderle in mano. Nelle mie gite ed escursioni entomologiche avevo sempre con me il minimo indispensabile per cercarle, ma trovavo solamente minerali contenenti ferro, scheggedi bombe ed altro ancora,mai quello che tanto deside- ravo. Poi un giorno il destino ha voluto premiare la mia costanza. Non ci pensavoproprio; era il 15 luglio 2003, mi trovavo a castenasoin loca- lità Madonna, per una passeggiataassieme a due amici.
Recommended publications
  • The M~Neralogical Composition and Structure of the Assisi Meteorite
    595 The m~neralogical composition and structure of the Assisi meteorite By G. R. LEvI-DoNATI (Doctor in Natural Sciences) Istituto di Mineralogia, Facolth di Scienze, Universit~ di Perugia, Italy [Taken as read 2 November 1966] Summary. The principal data about the fall and the distribution of the fragments of the Assisi (Perugia, Italy) meteorite are collected. A fragment of the stone, weighing 146.5 g, preserved in the British Museum (Natural History) (B.M. 63621), is described in some detail. Crust morphology, mineralogical composition, and structure are studied. Optical data are established by microscopical analysis of five thin sections and two polished surfaces. Compared with electron-probe analysis, they are found in good agreement. Assisi is an olivine-bronzite chondrite, H group, with characteristic features of metamorphism. N 24 May 1886, at 7 a.m., the sky being clear, a single stone weigh- O ing 1795 g fell in a cornfield in Tordandrea, 7"5 Km south-west of Assisi (Perugia, Italy). Three peasants were present and immediately unearthed the small meteorite. It was at a depth of about 60 cm, in an apparently vertical hole about 25 cm in diameter. The stone was 13.8 cm long, 12.8 cm wide. The fall was first described by Bellucci (1887), who submitted the individual specimen to a macroscopic examination. In the same year the complete meteorite was sent by Be]lucci to Vienna, where Eger made a cast of the stone and sawed the meteorite in several pieces. 1 Museums and collections later purchased the fragments, which (1967) are now widely distributed (B.
    [Show full text]
  • Japan Geoscience Union Meeting 2009 Presentation List
    Japan Geoscience Union Meeting 2009 Presentation List A002: (Advances in Earth & Planetary Science) oral 201A 5/17, 9:45–10:20, *A002-001, Science of small bodies opened by Hayabusa Akira Fujiwara 5/17, 10:20–10:55, *A002-002, What has the lunar explorer ''Kaguya'' seen ? Junichi Haruyama 5/17, 10:55–11:30, *A002-003, Planetary Explorations of Japan: Past, current, and future Takehiko Satoh A003: (Geoscience Education and Outreach) oral 301A 5/17, 9:00–9:02, Introductory talk -outreach activity for primary school students 5/17, 9:02–9:14, A003-001, Learning of geological formation for pupils by Geological Museum: Part (3) Explanation of geological formation Shiro Tamanyu, Rie Morijiri, Yuki Sawada 5/17, 9:14-9:26, A003-002 YUREO: an analog experiment equipment for earthquake induced landslide Youhei Suzuki, Shintaro Hayashi, Shuichi Sasaki 5/17, 9:26-9:38, A003-003 Learning of 'geological formation' for elementary schoolchildren by the Geological Museum, AIST: Overview and Drawing worksheets Rie Morijiri, Yuki Sawada, Shiro Tamanyu 5/17, 9:38-9:50, A003-004 Collaborative educational activities with schools in the Geological Museum and Geological Survey of Japan Yuki Sawada, Rie Morijiri, Shiro Tamanyu, other 5/17, 9:50-10:02, A003-005 What did the Schoolchildren's Summer Course in Seismology and Volcanology left 400 participants something? Kazuyuki Nakagawa 5/17, 10:02-10:14, A003-006 The seacret of Kyoto : The 9th Schoolchildren's Summer Course inSeismology and Volcanology Akiko Sato, Akira Sangawa, Kazuyuki Nakagawa Working group for
    [Show full text]
  • A Magnetic Susceptibility Database for Stony Meteorites
    Direttore Enzo Boschi Comitato di Redazione Cesidio Bianchi Tecnologia Geofisica Rodolfo Console Sismologia Giorgiana De Franceschi Relazioni Sole-Terra Leonardo Sagnotti Geomagnetismo Giancarlo Scalera Geodinamica Ufficio Editoriale Francesca Di Stefano Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma Tel. (06) 51860468 Telefax: (06) 51860507 e-mail: [email protected] A MAGNETIC SUSCEPTIBILITY DATABASE FOR STONY METEORITES Pierre Rochette1, Leonardo Sagnotti1, Guy Consolmagno2, Luigi Folco3, Adriana Maras4, Flora Panzarino4, Lauri Pesonen5, Romano Serra6 and Mauri Terho5 1Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy [[email protected]] 2Specola Vaticana, Castel Gandolfo, Italy 3Antarctic [PNRA] Museum of Siena, Siena, Italy 4Università La Sapienza, Roma, Italy 5University of Helsinki, Finland 6“Giorgio Abetti” Museum of San Giovanni in Persiceto, Italy Pierre Rochette et alii: A Magnetic Susceptibility Database for Stony Meteorites 1. Introduction the Museo Nationale dell’Antartide in Siena [Folco and Rastelli, 2000], the University of More than 22,000 different meteorites Roma “la Sapienza” [Cavaretta Maras, 1975], have been catalogued in collections around the the “Giorgio Abetti” Museum in San Giovanni world (as of 1999) of which 95% are stony types Persiceto [Levi-Donati, 1996] and the private [Grady, 2000]. About a thousand new meteorites collection of Matteo Chinelatto. In particular, are added every year, primarily from Antarctic the Antarctic Museum in Siena is the curatorial and hot-desert areas. Thus there is a need for centre for the Antarctic meteorite collection rapid systematic and non-destructive means to (mostly from Frontier Mountain) recovered by characterise this unique sampling of the solar the Italian Programma Nazionale di Ricerche in system materials.
    [Show full text]
  • Report of the United States National Museum
    — THE METEORITE COLLECTION IN THE U. S. NATIONAL MUSEUM; A CATALOGUE OF METEORITES REPRESENTED NOVEMBER 1, 1886, By F. W. Clarke. The following catalogue has been prepared mainly to facilitate ex- changes and to aid in the upbuilding of the collection. In addition to the usual information as to title, date of fall, and weight of specimen, it has beeu thought well to give the source from which each example was obtained ; and it may be interesting to note that the meteorites ac- credited to Dr. J. Berrien. Lindsley were mainly received by him from the late Dr. J. Lawrence Smith. In the catalogue of the Shepard col- lection, now on deposit in the Museum, the arrangement of Professor Shepard himself has been followed without change. Including the Shepard meteorites, over 200 falls are now on exhibition, giving the entire collection a very respectable place among the larger collections of the world. The Tucson iron is unique, and therefore a cut of it is inserted. METEORIC IRONS. 1. Scriba, Oswego County, N. Y. Fouud about 1834. Fragment, 9.15 grammes. By exchange from S. C. H. Bailey. 2. Burlington, Otsego County, N. Y. Ploughed up previous to 1819. Weight of specimen, 76.87 grammes. By exchange from Prof. C. U. Shepard. 3. Lockport, Niagara County, N. Y. Ploughed up earlier thau 1845. Slice weigh- ing 155 grammes. By exchange from the cabinet of Yale College. 4. Jenny's Cheek, Wayne County, W. Va. Found in 1884. Several small frag- ments, 25.5 grammes in all; largest fragment, 15.3 grammes.
    [Show full text]
  • The Meteorite Collection in the Natural Science Museum of Turin1
    CSIRO PUBLISHING www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2009, 26, 259–265 The Meteorite Collection in the Natural Science Museum of Turin1 E. CostaA,C and L. M. GalloB A Dipartimento di Scienze Mineralogiche e Petrografiche, Università degli Studi di Torino – Via Valperga Caluso 35, I–10136 Torino, Italy B Museo Regionale di Scienze Naturali, Sezione di Mineralogia, Petrografia e Geologia – Via G. Giolitti 36, I–10123 Torino, Italy C Corresponding author. Email: [email protected] Received 2008 November 11, accepted 2009 February 16 Abstract: The Natural Science Museum of Turin is the owner of a small but nice collection of meteorites, partly obtained by means of direct acquisition during the last 30 years, and partly inherited from the rather old collection of the University of Turin. This collection was partially forgotten for the last 50 years, and after 1936 the collection became almost invisible. In the last 30 years the meteorite samples were tightly packaged and retained in the basement of the museum building. Currently a new listing of the meteorite collection is in progress and almost finished, in which every sample is described, measured and weighed. For each sample the authors acquired high resolution images and examined historical documentations. Images were acquired with a desktop scanner, which was found to be an ideal tool for this purpose. A classification based on most famous meteorite catalogues is coupled to each description. About eighty samples (and probably a new meteorite, not described until now) will be depicted in the new catalogue, which hopefully will be published during 2009.
    [Show full text]
  • Oral Hist Honda.Fm
    Meteoritics & Planetary Science 38, Nr 7, Supplement, A177–A187 (2003) Abstract available online at http://meteoritics.org Report Oral histories in meteoritics and planetary science: XI. Masatake Honda Ursula B. MARVIN Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA E-mail: [email protected] (Received 27 May 2003) Abstract–Masatake Honda majored in inorganic chemistry at the University of Tokyo and then pursued graduate studies in geochemistry. In 1943, he completed his first research project, which yielded new data on the behavior of strontium in carbonates. He then spent the next two years as a technical officer in the Japanese Imperial Navy. While on duty, he gained expertise in the important new field of ion exchange methods, which he ultimately chose as the topic for his Ph.D. thesis and then expanded into a book. In 1955, Honda traveled to Switzerland and spent a year in research laboratories at Bern and Zürich. He then joined Professor James R. Arnold at Princeton University and soon began focusing his research on cosmic-ray produced nuclides in meteorites. Two years later, he accompanied Dr. Arnold to the University of California at La Jolla where they joined the research group of Professor Harold C. Urey. Honda developed techniques for measuring terrestrial ages of meteorites and showed that most of them have survived weathering for vastly longer periods than had been anticipated. After spending nearly eight years abroad, he returned to Japan in 1962 as a full professor at the University of Tokyo. During the Apollo missions, he performed research on cosmogenic nuclides in lunar rocks, surface soils, and deep drill cores.
    [Show full text]
  • Petrogenesis of Main Group Pallasite Meteorites Based on Relationships
    Vrije Universiteit Brussel Petrogenesis of main group pallasite meteorites based on relationships among texture, mineralogy, and geochemistry Mckibbin, Seann; Pittarello, Lidia; Makarona, Christina; Hamman, Christopher; Hecht, Lutz; Chernonozhkin, Stepan; Goderis, Steven; Claeys, Philippe Published in: Meteoritics & Planetary Science DOI: 10.1111/maps.13392 Publication date: 2019 Link to publication Citation for published version (APA): Mckibbin, S., Pittarello, L., Makarona, C., Hamman, C., Hecht, L., Chernonozhkin, S., ... Claeys, P. (2019). Petrogenesis of main group pallasite meteorites based on relationships among texture, mineralogy, and geochemistry. Meteoritics & Planetary Science, 54(11), 2814-2844. https://doi.org/10.1111/maps.13392 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 03. Oct. 2021 Meteoritics & Planetary Science 1–31 (2019) doi: 10.1111/maps.13392 Petrogenesis of main group pallasite meteorites based on relationships among texture, mineralogy, and geochemistry 1,5,6* 1,7 1 Seann J.
    [Show full text]
  • Annual Report of the Board of Regents of the Smithsonian Institution
    SECTIOlSr I. REP () K T VrON THK CONDITION AND PROGRESS OF THE U. S. NATIONAL MUSEUM DURING THE YEAR ENDING JUNE 30, 1891. G. BROWN GOODE, ASSISTANT SKCKETARY OF THK SMITHSONIAN INSTITUTION, IN CHARGE OF V. S. NATIONAL MUSEUM. SM 91, PT 2 1 KEPORT UPON S. NATIONAL MUSEUM THF CONDITION AND PROGRESS OF THE U. DURING THE YEAR ENDING JUNE BO, 1891. BY G. Brown Goode, Museum, Institution, in charge of U. S. National Assistant Secretan,, Smmsonian A.—GENERAL CONSIDEEATIONS. statement of the operations of the Before, entering upon a detailed Report, it is perhaps not Musenni during the period covered by tliis organization, and aims, in order undesirable to briefly outline its history, work now to be reported upon, as the that the true relationships of the be comprehended. outoTowth of the activities of other years, may by act of Congress m The Smithsonian Institution was established that '' all objects of art and 184G One of the provisions of the act was and all objects of natural history, of foreign and curious research, mineralogical specimens " belonging to the plants, and geological and of the Institution, to be ar- United States should be placed in the custody students. It was also pro- r-m-ed and classified so as to be available for of objects known as - the National ^dded that a miscellaneous collection accumulated in the Patent Oftice, Cabinet of Curiosities," which had beginning was thus made should be transferred to the Institution.* A which, however, was not recognized othcially for the National Museum, The various steps which under that designation until a later date.
    [Show full text]
  • The Orbits of Meteorites from Natural Thermoluminescence
    NASMCR---- _7 _7-- 207733 ./:;;/:y :',v" • ii., (:- _ -_"Z_- Attachment 5 ICAm:S 125. 281-287 (1997) \RTICLE Nf). IS965622 : i .'i_.-' /..¢__.,_"_7. _,, _1, j The Orbits of Meteorites from Natural Thermoluminescence P. H. BENOIT AND D. W. G. SEARS Cosmochemistry (Troup, Department of Chemistry and Biochemistry. University of Arkansas. Fayetteville. Arkansas 72701 E-mail: [email protected] Received December 15, 1995; revised July 29, 1996 The possible existence of meteoroid streams, even as The natural thermoluminescence (TL) of meteorites reflects relatively minor contributors to the terrestrial flux of extra- their irradiation and thermal histories. Virtually all ordinary terrestrial material, is important in understanding the or- chondrites have been irradiated long enough to have reach bital evolution of meteoroid bodies, the rarity of potential saturation natural TL levels, and thus natural TL levels in asteroidal sources for ordinary chondrites, which account these meteorites are determined largely by thermal history. The for more than 60% of meteorite falls (Greenberg and Nolan primary heat source for most meteorites is the Sun, and thus 1989), and apparent differences between meteorites cur- natural TL levels are determined primarily by the closest ap- rently falling and those that fell over the last few hundred proach to the Sun, i.e., perihelion. By converting natural TL thousand years and have been stored in the ice sheet of levels to perihelia, using an assumed albedo typical of meteoroid Antarctica (Koeberl and Cassidy 1991, Benoit and Sears bodies, it is found that most ordinary chondrites had perihelia of 0.85 to 1.0 AU prior to reaching Earth.
    [Show full text]
  • Radial Distribution of Spallogenic K, Ca, Ti, V and Mn Isotopes in Iron Meteorites Mineo Imamura *, Masako Shima **, and Masatake Honda
    Radial Distribution of Spallogenic K, Ca, Ti, V and Mn Isotopes in Iron Meteorites Mineo Imamura *, Masako Shima **, and Masatake Honda The Institute for Solid State Physics, The University of Tokyo Z. Naturforsch. 35 a, 267-279 (1980); received January 7, 1980 Dedicated to Professor H. Hintenberger on the occasion of his 70tli birthday Cosmic-ray-produced stable nuclides of Ca (mass number: 42, 43, 44 and 46), Ti (46, 47, 49 and 50), V (50), Cr (50, 53 and 54) and the long-lived nuclides, 40K and 53Mn were determined along the radial axes of the iron meteorites Grant and Treysa. Grant was extensively examined and the results compared with rare gas data. Although Treysa does not include enough samples to allow detailed analysis, the depth profile shows typical features for a small meteorite. The results were compared with calculated profiles of 40K, 49Ti and 53Mn using thick bombard- ment data. The approximate pre-atmospheric radii of Grant and Treysa were determined to be 30 cm and 14 cm, respectively. The effect of space erosion was also estimated by comparing the data of 49Ti and radioactive 53Mn in Grant and Treysa with the calculated patterns. It is suggested that space erosion of both meteorites is small (<0.8Ä/y) during the cosmic-ray exposure of several hundred million years. 1. Introduction Among the spallogenic nuclides in iron meteorites, the production rate of rare-gas isotopes decreases The interaction of primary cosmic radiation with with the depth of the sample, that is, production cor- meteorites produces many secondary particles of relates almost linearly with the attenuation of high various energies, causing very complex nuclear energy particles.
    [Show full text]
  • Xb Ie'ian%Mlseltm
    Xb1oxfitateie'ian%Mlseltm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 I 90 SEPTEMBER IO, I964 The Meteorite and Tektite Collection of the American Museum of Natural History BY BRIAN MASON' INTRODUCTION The first meteorite received by the American Museum of Natural History was a 46-gram piece of the Searsmont chondrite, presented by G. M. Brainerd of Rockland, Maine, in 1872. For some years the col- lection grew very slowly. Hovey (1896) published the first catalogue, in which he enumerated 55 pieces representing 26 different meteorites. However, the status of the collection was radically changed in 1900 with the acquisition of the Bement collection of minerals, through the gener- osity ofJ. Pierpont Morgan. Besides some 12,000 mineral specimens, the Bement collection contained 580 meteorites, representing nearly 500 different falls and finds. This acquisition established the meteorite col- lection of this museum as one of the great collections of the world, a situation that has been maintained by more recent additions. Some of the more notable additions may be briefly noted. In 1904 three Cape York irons, brought from Greenland in 1897 by R. E. Peary, were deposited in the museum. These are known as "Ahnighito" or "The Tent," "The Woman," and "The Dog" (fig. 1). "Ahnighito," the largest of the three, is approximately 11 feet long, 7 feet high, and 6 feet thick. Various estimates of its weight, ranging from 30 to 80 tons, have been published. Thanks to the Toledo Scale Company it was mounted 1 Chairman, Department of Mineralogy, the American Museum of Natural History.
    [Show full text]
  • Transactions 1902
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA SELECTED PAPERS a n d PROCEEDINGS 1902 A N D 1903 EDITED BY ARTHUR HARVEY, F.R.S.C. TORONTO: Z. M. COLLINS, PUBLISHER TO THE SOCIETY. 1904. The Royal Astronomical Society of Canada T h e L a t e GEORGE EDWARD LUMSDEN, F.R.A.S. MEMBER OF THE ASTRONOMICAL SOCIETY OF FRANCE, HONORARY MEMBER OF THE ASTRONOMICL SOCIETY OF MEXICO, PRESIDENT OF THE TORONTO ASTRONOMICAL SOCIETY 1900 AND 1901. THE Ro y a l Astronomical So c iety OF C a n a d a SELECTED PAPERS a n d PROCEEDINGS 1902 A N D 1903 EDITED BY ARTHUR HARVEY, F.R.S.C. TORONTO: Z. M. COLLINS, PUBLISHER TO THE SOCIETY. 1904. THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Officers, 1904 Honorary President—The Hon. RICHARD HARCOURT, M.A., LL.D., K.C., M.P.P., MINISTER OF EDUCATION, ONTARIO. President—C. A. CHANT, M.A., (Tor.),Ph.D. (Har.), Lecturer in Physics, Toronto University. First Vice-President—ALFRED T. De LURY, M.A., Associate Professor of Mathematics and Astronomy, Toronto University. Second Vice-President—W. BALFOUR MUSSON, 22 Park Road, Toronto. Treasurer—J. EDWARD MAYBEE, M.E., 103 Bay St., Toronto. Secretary—J. R. COLLINS, 131 Bay St., Toronto. Recorder—MISS ELSIE A. DENT, 17 St. James Ave. Librarian—ALFRED McFARLANE, M.A., Toronto. Curator—ROBERT S. DUNCAN, 516 Ontario Street. Other Members of Council Honoris Causa : Elected: A. ERVINS, Past President. A. F. MILLER. 280 Carlton L. W. SMITH, D.C.R., K.C., Street, Toronto. Past President. Rev.
    [Show full text]