Meteorites Catalog Format of the Meteorite Catalog
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tubular Symplectic Inclusions in Olivine from the Fukang Pallasite
Meteoritics & Planetary Science 45, Nr 5, 899–910 (2010) doi: 10.1111/j.1945-5100.2010.01054.x Tubular symplectic inclusions in olivine from the Fukang pallasite Michael R. STEVENS1, David R. BELL1,2, and Peter R. BUSECK1,2* 1School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA 2Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA *Corresponding author. E-mail: [email protected] (Received 11 June 2009; revision accepted 27 March 2010) Abstract–Olivine from the Fukang meteorite, like that from many other pallasites, contains distinctive arrays of parallel, straight, tubular inclusions. They differ in their extension and linearity from those in terrestrial olivines. They comprise approximately 1% of the total volume. Most have lens-shaped cross-sections, but some are rounded. The major axis of the lens-shaped inclusions is rigorously oriented along olivine [001], and the rounded ones lie along olivine [010] and a few along [100]. The linear nature and orientations of the inclusions suggest that they nucleated on screw dislocations, perhaps formed through shock triggering. High-resolution transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy show that the inclusions consist of symplectic intergrowths of chromite, diopside, and silica that appear to have formed by exsolution from the host olivine. The symplectites consist of chromite lamellae with approximately 35-nm spacings that grew outward from a central plane, with interstitial diopside and silica. Contrast modulations having an average spacing of 4.4 nm occur within the chromite lamellae. Using a reaction- front model, we estimate that exsolution occurred over a period of 30 to 100 min, suggesting rapid cooling at high temperature. -
The M~Neralogical Composition and Structure of the Assisi Meteorite
595 The m~neralogical composition and structure of the Assisi meteorite By G. R. LEvI-DoNATI (Doctor in Natural Sciences) Istituto di Mineralogia, Facolth di Scienze, Universit~ di Perugia, Italy [Taken as read 2 November 1966] Summary. The principal data about the fall and the distribution of the fragments of the Assisi (Perugia, Italy) meteorite are collected. A fragment of the stone, weighing 146.5 g, preserved in the British Museum (Natural History) (B.M. 63621), is described in some detail. Crust morphology, mineralogical composition, and structure are studied. Optical data are established by microscopical analysis of five thin sections and two polished surfaces. Compared with electron-probe analysis, they are found in good agreement. Assisi is an olivine-bronzite chondrite, H group, with characteristic features of metamorphism. N 24 May 1886, at 7 a.m., the sky being clear, a single stone weigh- O ing 1795 g fell in a cornfield in Tordandrea, 7"5 Km south-west of Assisi (Perugia, Italy). Three peasants were present and immediately unearthed the small meteorite. It was at a depth of about 60 cm, in an apparently vertical hole about 25 cm in diameter. The stone was 13.8 cm long, 12.8 cm wide. The fall was first described by Bellucci (1887), who submitted the individual specimen to a macroscopic examination. In the same year the complete meteorite was sent by Be]lucci to Vienna, where Eger made a cast of the stone and sawed the meteorite in several pieces. 1 Museums and collections later purchased the fragments, which (1967) are now widely distributed (B. -
Petrography and Mineral Chemistry of Escalón Meteorite, an H4 Chondrite, México
148 Reyes-SalasRevista Mexicana et al. de Ciencias Geológicas, v. 27, núm. 1, 2010, p. 148-161 Petrography and mineral chemistry of Escalón meteorite, an H4 chondrite, México Adela M. Reyes-Salas1,*, Gerardo Sánchez-Rubio1, Patricia Altuzar-Coello2, Fernando Ortega-Gutiérrez1, Daniel Flores-Gutiérrez3, Karina Cervantes-de la Cruz1, Eugenio Reyes4, and Carlos Linares5 1 Universidad Nacional Autónoma de México, Instituto de Geología, Del. Coyoacán, 04510 México D.F., Mexico. 2 Universidad Nacional Autónoma de México, Centro de Investigación en Energía, Campus Temixco, Priv. Xochicalco s/n, 62580 Temixco Morelos, Mexico. 3 Universidad Nacional Autónoma de México, Instituto de Astronomía, Del. Coyoacán, 04510 México D.F., Mexico. 4 Universidad Nacional Autónoma de México, Facultad de Química, Del. Coyoacán, 04510 México D.F., Mexico. 5 Universidad Nacional Autónoma de México, Instituto de Geofísica, Del. Coyoacán, 04510 México D.F., Mexico. * [email protected] ABSTRACT The Escalón meteorite, a crusted mass weighing 54.3 g, was recovered near Zona del Silencio in Escalón, state of Chihuahua, México. The stone is an ordinary chondrite belonging to the high iron group H, type 4. Electron microprobe analyses of olivine (Fa18.1) and pyroxene (Fs16.5), phosphate, plagioclase, opaque phases, matrix and chondrule glasses are presented. The metal phases present are kamacite (6.08 % Ni), taenite (31.66 % Ni), high nickel taenite (50.01 % Ni) and traces of native Cu. The chondrules average apparent diameter measures 0.62 mm. X-ray diffraction pattern shows olivine, pyroxene and kamacite. Alkaline-type glass is found mainly in chondrules. This meteorite is a stage S3, shock-blackened chondrite with weathering grade W0. -
(Sptpang Coil.) [I49] I50 Bulletin American Museum of Natural History
Article VIII.-CATALOGUE OF METEORITES IN THE COLLECTION OF THE AMERICAN MUSEUM OF NATURAL HISTORY, TO JULY i, I896. By E. 0. HOVEY. 'T'he Collection of Meteorites in the Arnerican Museum of Natural History consists of fifty-five slabs, fragments and com- plete individuals, representing twenty-six falls and finds. The foundation of the mineralogical department of the Museum was laid in I874 by the purchase of the collection of S. C. H. Bailey, in which there were a few meteorites. More were acquired with the portion of the Norman Spang Collection of Minerals which was purchased in I89I, and other meteorites have been bought by the Museum from time to time, or have been presented to it by friends. The soujrce from which each specimen came has been indicated in the following cataloguLe. This publication is made to assist. the large number of persons who have become interested in knowing the extent to which the material of various falls and finds has been distributed among collections and the present location of specimens. AEROSIDERITES. (IRON METEORI ES.) Cat. Date of NAME AND Weight No. Discovery. DE;SCRIPTION. in grams. 18 1784 Tejupilco, Toluca Valley, Mexico. A complete individual, the surface of which has scaled off somewhat. A polished and etched surface shows coarse Widmanstatten figures. 1153. (Bailey Co/i.) 17841 Xiquipilco, Toluca Valley, Mexico. A complete individual of ellipsoidal form, which had been used as a pounder by the natives. 564. (Sptpang Coil.) [I49] I50 Bulletin American Museum of Natural History. [Vol. VIII, AEROSIDERITES.-Continued. Cat. Date of NAME AND DESCRIPTION. -
Sitzungsberichte Und Abhandlungen Der Naturwissenschaftlichen Gesellschaft Isis in Dresden
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sitzungsberichte und Abhandlungen der Naturwissenschaftlichen Gesellschaft Isis in Dresden Jahr/Year: 1911 Band/Volume: 1911 Autor(en)/Author(s): Schreiter Rudolf Artikel/Article: VI. Die Meteoriten des Kgl. Mineralogischen Museums in Dresden 1058-1075 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/;www.zobodat.at VI. Die Meteoriten des Kgl. Mineralogischen Museums in Dresden. Yon Dr. R. Schreiter. Die Meteoritensammlung des Kgl. Mineralogischen Museums in Dresden hat besonders im Laufe der letzten Jahre wertvollen Zuwachs erfahren, so dafs es geboten erscheint, über ihren derzeitigen Stand einen Bericht zu veröffentlichen, in dem zugleich eine gedrängte Übersicht über ihre Entwicklung gegeben werden soll. Nach Ausweis des von H. Gössel aufgestellten alten Katalogs vom Jahre 1846 waren, abgesehen von zweifel- haften Meteoriten, wie Collina di Brianza, San Sacramento Lake u. a. bis dahin Stücke von nur fünf Fall- bzw. Fundorten vorhanden. Drei Stück des berühmten Pallaseisens Krasnojarsk und zwei Magura bildeten den einzigen Bestand an Meteoreisen, während die Meteorsteine mit L’Aigle, Lasdany und Stannern vertreten waren. Bis Ende 1875 führt der General- katalog des Kgl. Mineralogischen Museums Meteorsteine von acht verschie- denen Fallorten an (Bishopville, Hessle, Kernouve, Knyahinya, L’Aigle, Lasdany, Pultusk und Stannern) und Meteoreisen bereits von 14 Fundorten (Bitburg, Bohumilitz, Braunau, Elbogen, Imilac, Krasnojarsk, Madoc, Magura, Nenntmansdorf, Putnam County, Seeläsgen, Steinbach, Toluca, Zacatecas); In der im Jahre 1882 in den Sitzungsberichten der Isis von A. Purgold veröffentlichten Abhandlung wird ein Verzeichnis über die Meteoritensammlung gegeben, die danach 24 verschiedene Fälle von Meteor- steinen und 34 verschiedene Fälle von Meteoreisen umfafst. -
To Here from Eternity: the Story of the Bovedy, Crumlin and Leighlinbridge Meteorites
TO HERE FROM ETERNITY The story of the Bovedy, Crumlin and Leighlinbridge meteorites Mike Simms, Ulster Museum Friday 25th April 1969 9.25 p.m. A fireball streaks across the night sky Friday 25th April 1969 9.25 p.m. A fireball streaks across the night sky It takes less than a minute to cross the UK! …and barely 15 seconds to cross Northern Ireland A small rock smashes a roof near Lisburn A bigger one lands in a field near Garvagh. These are meteorites - the first found in Ireland since 1902, and the last for another 30 years. Where else have they fallen in Ireland? Only 8 meteorite falls in 230 years! The Bovedy, Crumlin and Leighlinbridge meteorites all fell in the 20th Century Bovedy meteorite all are L3 Ordinary Chondrite Type L Ordinary Chondrites Crumlin meteorite (these are slices) L5 Ordinary Chondrite Leighlinbridge meteorite L6 Ordinary Chondrite Types of meteorites and their abundance (%) Stony Meteorites Falls Finds Ordinary Chondrites 76.9% 50.9% Carbonaceous Chondrites 3.7% Other chondrite types 1.7% Achondrites 7.7% Ungrouped 4.3% Irons 4.2% 20.8% Stony-irons 1.3% …which is why they are called Ordinary Chondrites. Types of Ordinary Chondrite (each comes from its own parent planet) Type H (High in iron) Mooresfort 1810 Limerick 1813 Killeter 1844 Dundrum 1865 Crumlin 1902 Bovedy 1969 Leighlinbridge 1999 Type L (Low in iron) In the beginning, >4568 million years ago… Star formation triggered by a supernova Al26 Fe60 The Sun forms. Planets accrete and melt. Planetismal accretion Melting (due to Al26 and Fe60) Differentiation Pallasite meteorites (planet mantle) Iron meteorites (planet core) Achondrite meteorites (planet crust) Pallasite meteorites (planet mantle) But none of these are chondrite meteorites… Iron meteorites (planet core) Achondrite meteorites (planet crust) How and when did the chondrules form? Sprucefield slice Splashes from the collision of molten planetismals. -
(M = Ca, Mg, Fe2+), a Structural Base of Ca3mg3(PO4)4 Phosphors
crystals Article Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors Sergey N. Britvin 1,2,* , Maria G. Krzhizhanovskaya 1, Vladimir N. Bocharov 3 and Edita V. Obolonskaya 4 1 Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia; [email protected] 2 Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia 3 Centre for Geo-Environmental Research and Modelling, Saint-Petersburg State University, Ulyanovskaya ul. 1, 198504 St. Petersburg, Russia; [email protected] 4 The Mining Museum, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia; [email protected] * Correspondence: [email protected] Received: 1 May 2020; Accepted: 25 May 2020; Published: 1 June 2020 Abstract: Stanfieldite, natural Ca-Mg-phosphate, is a typical constituent of phosphate-phosphide assemblages in pallasite and mesosiderite meteorites. The synthetic analogue of stanfieldite is used as a crystal matrix of luminophores and frequently encountered in phosphate bioceramics. However, the crystal structure of natural stanfieldite has never been reported in detail, and the data available so far relate to its synthetic counterpart. We herein provide the results of a study of stanfieldite from the Brahin meteorite (main group pallasite). The empirical formula of the mineral is Ca8.04Mg9.25Fe0.72Mn0.07P11.97O48. Its crystal structure has been solved and refined to R1 = 0.034. Stanfieldite from Brahin is monoclinic, C2/c, a 22.7973(4), b 9.9833(2), c 17.0522(3) Å, β 99.954(2)◦, 3 V 3822.5(1)Å . -
The Mineralogical Magazine Journal
THE MINERALOGICAL MAGAZINE AND JOURNAL OF THE MINERALOGICAL SOCIETY. 1~o. 40. OCTOBER 1889. Vol. VIII. On the Meteorites which have been found iu the Desert of Atacama and its neighbourhood. By L. FLETCHER, M.A., F.R.S., Keeper of Minerals in the British Museum. (With a Map of the District, Plate X.) [Read March 12th and May 7th, ]889.J 1. THE immediate object of the present paper is to place on record J- the history and characters of several Atacama meteorites of which no description has yet been published; but incidentally it is con- venient at the same time to consider the relationship of these masses to others from the same region, which either have been already described, or at least are stated to be preserved in one or more of the known Meteo. rite-Collections. 2. The term " Desert of Atacama " is generally applied to that part of western South America which lies between the towns of Copiapo and Cobija, about 330 miles distant from each other, and which extends island as far as the Indian hamlet of Antofagasta, about 180 miles from 224 L. FLETCHER ON THE METEORITES OF ATACAMA. the coast. The Atacama meteorites preserved in the Collections have been found at several places widely separated throughout the Desert. 3. A critical examination of the descriptive literature, and a compari- son of the manuscript and printed meteorite-lists, which have been placed at my service, lead to the conclusion that all the meteoritic frag- ments from Atacama now preserved in the known Collections belong to one or other of at most thirteen meteorites, which, for reasons given below, are referred to in this paper under the following names :-- 1. -
A Magnetic Susceptibility Database for Stony Meteorites
Direttore Enzo Boschi Comitato di Redazione Cesidio Bianchi Tecnologia Geofisica Rodolfo Console Sismologia Giorgiana De Franceschi Relazioni Sole-Terra Leonardo Sagnotti Geomagnetismo Giancarlo Scalera Geodinamica Ufficio Editoriale Francesca Di Stefano Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma Tel. (06) 51860468 Telefax: (06) 51860507 e-mail: [email protected] A MAGNETIC SUSCEPTIBILITY DATABASE FOR STONY METEORITES Pierre Rochette1, Leonardo Sagnotti1, Guy Consolmagno2, Luigi Folco3, Adriana Maras4, Flora Panzarino4, Lauri Pesonen5, Romano Serra6 and Mauri Terho5 1Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy [[email protected]] 2Specola Vaticana, Castel Gandolfo, Italy 3Antarctic [PNRA] Museum of Siena, Siena, Italy 4Università La Sapienza, Roma, Italy 5University of Helsinki, Finland 6“Giorgio Abetti” Museum of San Giovanni in Persiceto, Italy Pierre Rochette et alii: A Magnetic Susceptibility Database for Stony Meteorites 1. Introduction the Museo Nationale dell’Antartide in Siena [Folco and Rastelli, 2000], the University of More than 22,000 different meteorites Roma “la Sapienza” [Cavaretta Maras, 1975], have been catalogued in collections around the the “Giorgio Abetti” Museum in San Giovanni world (as of 1999) of which 95% are stony types Persiceto [Levi-Donati, 1996] and the private [Grady, 2000]. About a thousand new meteorites collection of Matteo Chinelatto. In particular, are added every year, primarily from Antarctic the Antarctic Museum in Siena is the curatorial and hot-desert areas. Thus there is a need for centre for the Antarctic meteorite collection rapid systematic and non-destructive means to (mostly from Frontier Mountain) recovered by characterise this unique sampling of the solar the Italian Programma Nazionale di Ricerche in system materials. -
Geological Survey Canada
70-66 GEOLOGICAL PAPER 70-66 ., SURVEY OF CANADA DEPARTMENT OF ENERGY, MINES AND RESOURCES REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 J. A. V. Douglas 1971 Price, 75 cents GEOLOGICAL SURVEY OF CANADA CANADA PAPER 70-66 REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 J. A. V. Douglas DEPARTMENT OF ENERGY, MINES AND RESOURCES @)Crown Copyrights reserved Available by mail from Information Canada, Ottawa from the Geological Survey of Canada 601 Booth St., Ottawa and Information Canada bookshops in HALIFAX - 1735 Barrington Street MONTREAL - 1182 St. Catherine Street West OTTAWA - 171 Slater Street TORONTO - 221 Yonge Street WINNIPEG - 499 Portage Avenue VANCOUVER - 657 Granville Street or through your bookseller Price: 75 cents Catalogue No. M44-70-66 Price subject to change without notice Information Canada Ottawa 1971 ABSTRACT A catalogue of the National Meteorite Collection of Canada, published in 1963 listed 242 different meteorite specimens. Since then specimens from 50 a dditional meteorites have been added to the collection and several more specimens have been added to the tektite collection. This report describes all specimens in the collection. REVISED CATALOGUE OF THE NATIONAL METEORITE COLLECTION OF CANADA LISTING ACQUISITIONS TO AUGUST 31, 1970 INTRODUCTION At the beginning of the nineteenth century meteorites were recog nized as unique objects worth preserving in collections. Increasingly they have become such valuable objects for investigation in many fields of scienti fic research that a strong international interest in their conservation and pre servation has developed (c. f. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
W Numerze: – Wywiad Z Kustoszem Watykańskiej Kolekcji C.D. – Cz¹stki
KWARTALNIK MI£OŒNIKÓW METEORYTÓW METEORYTMETEORYT Nr 3 (63) Wrzesieñ 2007 ISSN 1642-588X W numerze: – wywiad z kustoszem watykañskiej kolekcji c.d. – cz¹stki ze Stardusta a meteorytry – trawienie meteorytów – utwory sp³ywania na Sikhote-Alinach – pseudometeoryty – konferencja w Tucson METEORYT Od redaktora: kwartalnik dla mi³oœników OpóŸnieniami w wydawaniu kolejnych numerów zaczynamy meteorytów dorównywaæ „Meteorite”, którego sierpniowy numer otrzyma³em Wydawca: w paŸdzierniku. Tym razem g³ówn¹ przyczyn¹ by³y k³opoty z moim Olsztyñskie Planetarium komputerem, ale w koñcowej fazie redagowania okaza³o siê tak¿e, i Obserwatorium Astronomiczne ¿e brak materia³u. Musia³em wiêc poczekaæ na mocno opóŸniony Al. Pi³sudskiego 38 „Meteorite”, z którego dorzuci³em dwa teksty. 10-450 Olsztyn tel. (0-89) 533 4951 Przeskok o jeden numer niezupe³nie siê uda³, a zapowiedzi¹ [email protected] dalszych k³opotów jest mi³y sk¹din¹d fakt, ¿e przep³yw materia³ów zacz¹³ byæ dwukierunkowy. W najnowszym numerze „Meteorite” konto: ukaza³ siê artyku³ Marcina Cima³y o Moss z „Meteorytu” 3/2006, 88 1540 1072 2001 5000 3724 0002 a w kolejnym numerze zapowiedziany jest artyku³ o Morasku BOŒ SA O/Olsztyn z „Meteorytu” 4/2006. W rezultacie jednak bêdzie mniej materia³u do Kwartalnik jest dostêpny g³ównie t³umaczenia i trzeba postaraæ siê o dalsze w³asne teksty. Czy mo¿e ktoœ w prenumeracie. Roczna prenu- merata wynosi w 2007 roku 44 z³. chcia³by coœ napisaæ? Zainteresowanych prosimy o wp³a- Z przyjemnoœci¹ odnotowujê, ¿e nabieraj¹ tempa przygotowania cenie tej kwoty na konto wydawcy do kolejnej konferencji meteorytowej, która planowana jest na 18—20 nie zapominaj¹c o podaniu czytel- nego imienia, nazwiska i adresu do kwietnia 2008 r.