January 2015 BRAS Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stsci Newsletter: 1997 Volume 014 Issue 01
January 1997 • Volume 14, Number 1 SPACE TELESCOPE SCIENCE INSTITUTE Highlights of this issue: • AURA science and functional awards to Leitherer and Hanisch — pages 1 and 23 • Cycle 7 to be extended — page 5 • Cycle 7 approved Newsletter program listing — pages 7-13 Astronomy with HST Climbing the Starburst Distance Ladder C. Leitherer Massive stars are an important and powerful star formation events in sometimes dominant energy source for galaxies. Even the most luminous star- a galaxy. Their high luminosity, both in forming regions in our Galaxy are tiny light and mechanical energy, makes on a cosmic scale. They are not them detectable up to cosmological dominated by the properties of an distances. Stars ~100 times more entire population but by individual massive than the Sun are one million stars. Therefore stochastic effects times more luminous. Except for stars prevail. Extinction represents a severe of transient brightness, like novae and problem when a reliable census of the supernovae, hot, massive stars are Galactic high-mass star-formation the most luminous stellar objects in history is atempted, especially since the universe. massive stars belong to the extreme Massive stars are, however, Population I, with correspondingly extremely rare: The number of stars small vertical scale heights. Moreover, formed per unit mass interval is the proximity of Galactic regions — roughly proportional to the -2.35 although advantageous for detailed power of mass. We expect to find very studies of individual stars — makes it few massive stars compared to, say, difficult to obtain integrated properties, solar-type stars. This is consistent with such as total emission-line fluxes of observations in our solar neighbor- the ionized gas. -
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds
THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 90 — 27 March 2000 Editor: Bo Reipurth ([email protected]) Abstracts of recently accepted papers The Formation and Fragmentation of Primordial Molecular Clouds Tom Abel1, Greg L. Bryan2 and Michael L. Norman3,4 1 Harvard Smithsonian Center for Astrophysics, MA, 02138 Cambridge, USA 2 Massachusetts Institute of Technology, MA, 02139 Cambridge, USA 3 LCA, NCSA, University of Illinois, 61801 Urbana/Champaign, USA 4 Astronomy Department, University of Illinois, Urbana/Champaign, USA E-mail contact: [email protected] Many questions in physical cosmology regarding the thermal history of the intergalactic medium, chemical enrichment, reionization, etc. are thought to be intimately related to the nature and evolution of pregalactic structure. In particular the efficiency of primordial star formation and the primordial IMF are of special interest. We present results from high resolution three–dimensional adaptive mesh refinement simulations that follow the collapse of primordial molecular clouds and their subsequent fragmentation within a cosmologically representative volume. Comoving scales from 128 kpc down to 1 pc are followed accurately. Dark matter dynamics, hydrodynamics and all relevant chemical and radiative processes (cooling) are followed self-consistently for a cluster normalized CDM structure formation model. Primordial molecular clouds with ∼ 105 solar masses are assembled by mergers of multiple objects that have formed −4 hydrogen molecules in the gas phase with a fractional abundance of ∼< 10 . As the subclumps merge cooling lowers the temperature to ∼ 200 K in a “cold pocket” at the center of the halo. Within this cold pocket, a quasi–hydrostatically > 5 −3 contracting core with mass ∼ 200M and number densities ∼ 10 cm is found. -
Near and Mid-IR Photometry of the Pleiades, and a New List Of
ApJS, in press; version with embedded figures can be obtained at http://spider.ipac.caltech.edu/staff/stauffer/ Near and Mid-IR Photometry of the Pleiades, and a New List of Substellar Candidate Members1,2 John R. Stauffer Spitzer Science Center, Caltech 314-6, Pasadena, CA 91125 [email protected] Lee W. Hartmann Astronomy Department, University of Michigan Giovanni G. Fazio, Lori E. Allen, Brian M. Patten Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 Patrick J. Lowrance, Robert L. Hurt, Luisa M. Rebull Spitzer Science Center, Caltech , Pasadena, CA 91125 Roc M. Cutri, Solange V. Ramirez Infrared Processing and Analysis Center, Caltech 220-6, Pasadena, CA 91125 Erick T. Young, George H. Rieke, Nadya I. Gorlova3, James C. Muzerolle Steward Observatory, University of Arizona, Tucson, AZ 85726 Cathy L. Slesnick Astronomy Department, Caltech, Pasadena, CA 91125 arXiv:0704.1832v1 [astro-ph] 13 Apr 2007 Michael F. Skrutskie Astronomy Department, University of Virginia, Charlottesville, VA 22903 1This work is based (in part) on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. 2This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. 3Current address: University of Florida, 211 Bryant Space Center, Gainesville, FL 32611 –2– ABSTRACT We make use of new near and mid-IR photometry of the Pleiades cluster in order to help identify proposed cluster members. -
Determination of the Night Sky Background Around the Crab Pulsar Using Its Optical Pulsation
28th International Cosmic Ray Conference 2449 Determination of the Night Sky Background around the Crab Pulsar Using its Optical Pulsation E. O˜na-Wilhelmi1,2, J. Cortina3, O.C. de Jager1, V. Fonseca2 for the MAGIC collaboration (1) Unit for Space Physics, Potchefstroom University for CHE, Potchefstroom 2520, South Africa (2) Dept. de f´isica At´omica, Nuclear y Molecular, UCM, Ciudad Universitaria s/n, Madrid, Spain (3) Institut de Fisica de l’Altes Energies, UAB, Barcelona, Spain Abstract The poor angular resolution of imaging γ-ray telescopes is offset by the large collection area of the next generation telescopes such as MAGIC (17 m diameter) which makes the study of optical emission associated with some γ-ray sources feasible. In particular the optical photon flux causes an increase in the photomultiplier DC currents. Furthermore, the extremely fast response of PMs make them ideal detectors for fast (subsecond) optical transients and periodic sources like pulsars. The HEGRA CT1 telescope (1.8 m radius) is the smallest Cerenkovˆ telescope which has seen the Crab optical pulsations. 1. Method Imaging Atmospheric Cerenkovˆ Detectors (IACT) can be used to detect the optical emission of an astronomical object through the increase it generates in the currents of the camera pixels [7,3]. Since the Crab pulsar shows pulsed emission in the optical wavelengths with the same frequency as in radio and most probably of VHE γ-rays, we use the central pixel of CT1 [5] and MAGIC [1] to monitor the optical Crab pulsation. Before the Crab observations were performed, the expected rate of the Crab pulsar and background were estimated theoretically. -
Succeeding Succession: Cosmic and Earthly Succession B.C.-17 A.D
Publication of this volume has been made possiblej REPEAT PERFORMANCES in partj through the generous support and enduring vision of WARREN G. MOON. Ovidian Repetition and the Metamorphoses Edited by LAUREL FULKERSON and TIM STOVER THE UNIVE RSITY OF WI S CON SIN PRE SS The University of Wisconsin Press 1930 Monroe Street, 3rd Floor Madison, Wisconsin 53711-2059 Contents uwpress.wisc.edu 3 Henrietta Street, Covent Garden London WC2E SLU, United Kingdom eurospanbookstore.com Copyright © 2016 The Board of Regents of the University of Wisconsin System Preface Allrights reserved. Except in the case of brief quotations embedded in critical vii articles and reviews, no part of this publication may be reproduced, stored in a retrievalsystem, transmitted in any format or by any means-digital, electronic, Introduction: Echoes of the Past 3 mechanical, photocopying, recording, or otherwise-or conveyed via the LAUREL FULKERSON AND TIM STOVER Internetor a website without written permission of the University of Wisconsin Press. Rightsinquiries should be directed to rights@>uwpress.wisc.edu. 1 Nothing like the Sun: Repetition and Representation in Ovid's Phaethon Narrative 26 Printed in the United States of America ANDREW FELDHERR This book may be available in a digital edition. 2 Repeat after Me: The Loves ofVenus and Mars in Library of Congress Cataloging-in-Publication Data Ars amatoria 2 and Metamorphoses 4 47 BARBARA WElDEN BOYD Names: Fulkerson, Laurel, 1972- editor. 1 Stover, Tim, editor. Title: Repeat performances : Ovidian repetition and the Metamorphoses / 3 Ovid's Cycnus and Homer's Achilles Heel edited by Laurel Fulkerson and Tim Stover. PETER HESLIN Other titles: Wisconsin studies in classics. -
The Zodiac: Comparison of the Ancient Greek Mythology and the Popular Romanian Beliefs
THE ZODIAC: COMPARISON OF THE ANCIENT GREEK MYTHOLOGY AND THE POPULAR ROMANIAN BELIEFS DOINA IONESCU *, FLORA ROVITHIS ** , ELENI ROVITHIS-LIVANIOU *** Abstract : This paper intends to draw a comparison between the ancient Greek Mythology and the Romanian folk beliefs for the Zodiac. So, after giving general information for the Zodiac, each one of the 12 zodiac signs is described. Besides, information is given for a few astronomical subjects of special interest, together with Romanian people believe and the description of Greek myths concerning them. Thus, after a thorough examination it is realized that: a) The Greek mythology offers an explanation for the consecration of each Zodiac sign, and even if this seems hyperbolic in almost most of the cases it was a solution for things not easily understood at that time; b) All these passed to the Romanians and influenced them a lot firstly by the ancient Greeks who had built colonies in the present Romania coasts as well as via commerce, and later via the Romans, and c) The Romanian beliefs for the Zodiac is also connected to their deep Orthodox religious character, with some references also to their history. Finally, a general discussion is made and some agricultural and navigator suggestions connected to Pleiades and Hyades are referred, too. Keywords : Zodiac, Greek, mythology, tradition, religion. PROLOGUE One of their first thoughts, or questions asked, by the primitive people had possibly to do with sky and stars because, when during the night it was very dark, all these lights above had certainly arose their interest. So, many ancient civilizations observed the stars as well as their movements in the sky. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i, -
Arxiv:0809.1275V2
How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd. -
Experiencing Hubble
PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster. -
Ghost Imaging of Space Objects
Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.