Stsci Newsletter: 1991 Volume 008 Issue 03
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Determination of the Night Sky Background Around the Crab Pulsar Using Its Optical Pulsation
28th International Cosmic Ray Conference 2449 Determination of the Night Sky Background around the Crab Pulsar Using its Optical Pulsation E. O˜na-Wilhelmi1,2, J. Cortina3, O.C. de Jager1, V. Fonseca2 for the MAGIC collaboration (1) Unit for Space Physics, Potchefstroom University for CHE, Potchefstroom 2520, South Africa (2) Dept. de f´isica At´omica, Nuclear y Molecular, UCM, Ciudad Universitaria s/n, Madrid, Spain (3) Institut de Fisica de l’Altes Energies, UAB, Barcelona, Spain Abstract The poor angular resolution of imaging γ-ray telescopes is offset by the large collection area of the next generation telescopes such as MAGIC (17 m diameter) which makes the study of optical emission associated with some γ-ray sources feasible. In particular the optical photon flux causes an increase in the photomultiplier DC currents. Furthermore, the extremely fast response of PMs make them ideal detectors for fast (subsecond) optical transients and periodic sources like pulsars. The HEGRA CT1 telescope (1.8 m radius) is the smallest Cerenkovˆ telescope which has seen the Crab optical pulsations. 1. Method Imaging Atmospheric Cerenkovˆ Detectors (IACT) can be used to detect the optical emission of an astronomical object through the increase it generates in the currents of the camera pixels [7,3]. Since the Crab pulsar shows pulsed emission in the optical wavelengths with the same frequency as in radio and most probably of VHE γ-rays, we use the central pixel of CT1 [5] and MAGIC [1] to monitor the optical Crab pulsation. Before the Crab observations were performed, the expected rate of the Crab pulsar and background were estimated theoretically. -
THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M . -
Experiencing Hubble
PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster. -
Arxiv:2009.04090V2 [Astro-Ph.GA] 14 Sep 2020
Research in Astronomy and Astrophysics manuscript no. (LATEX: tikhonov˙Dorado.tex; printed on September 15, 2020; 1:01) Distance to the Dorado galaxy group N.A. Tikhonov1, O.A. Galazutdinova1 Special Astrophysical Observatory, Nizhnij Arkhyz, Karachai-Cherkessian Republic, Russia 369167; [email protected] Abstract Based on the archival images of the Hubble Space Telescope, stellar photometry of the brightest galaxies of the Dorado group:NGC 1433, NGC1533,NGC1566and NGC1672 was carried out. Red giants were found on the obtained CM diagrams and distances to the galaxies were measured using the TRGB method. The obtained values: 14.2±1.2, 15.1±0.9, 14.9 ± 1.0 and 15.9 ± 0.9 Mpc, show that all the named galaxies are located approximately at the same distances and form a scattered group with an average distance D = 15.0 Mpc. It was found that blue and red supergiants are visible in the hydrogen arm between the galaxies NGC1533 and IC2038, and form a ring structure in the lenticular galaxy NGC1533, at a distance of 3.6 kpc from the center. The high metallicity of these stars (Z = 0.02) indicates their origin from NGC1533 gas. Key words: groups of galaxies, Dorado group, stellar photometry of galaxies: TRGB- method, distances to galaxies, galaxies NGC1433, NGC 1533, NGC1566, NGC1672 1 INTRODUCTION arXiv:2009.04090v2 [astro-ph.GA] 14 Sep 2020 A concentration of galaxies of different types and luminosities can be observed in the southern constella- tion Dorado. Among them, Shobbrook (1966) identified 11 galaxies, which, in his opinion, constituted one group, which he called “Dorado”. -
EVOLUTION of the CRAB NEBULA in a LOW ENERGY SUPERNOVA Haifeng Yang and Roger A
Draft version August 23, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA Haifeng Yang and Roger A. Chevalier Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904; [email protected], [email protected] Draft version August 23, 2018 ABSTRACT The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy ( 1050 ergs). We do not favor a model in which circumstellar interaction powers the supernova luminosity∼ near maximum light because the required mass would limit the freely expanding ejecta. Subject headings: ISM: individual objects (Crab Nebula) | supernovae: general | supernovae: indi- vidual (SN 1054) 1. INTRODUCTION energy of 1050 ergs (Chugai & Utrobin 2000). However, SN 1997D had a peak absolute magnitude of 14, con- The identification of the supernova type of SN 1054, − the event leading to the Crab Nebula, has been an en- siderably fainter than SN 1054 at maximum. -
A Thin Diffuse Component of the Galactic Ridge X-Ray Emission and Heating of the Interstellar Medium Contributed by the Radiation of Galactic X-Ray Binaries
A&A 564, A107 (2014) Astronomy DOI: 10.1051/0004-6361/201323332 & c ESO 2014 Astrophysics A thin diffuse component of the Galactic ridge X-ray emission and heating of the interstellar medium contributed by the radiation of Galactic X-ray binaries Margherita Molaro1, Rishi Khatri1, and Rashid A. Sunyaev1,2 1 Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany e-mail: [email protected] 2 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia Received 23 December 2013 / Accepted 14 January 2014 ABSTRACT We predict athindiffuse component of the Galactic ridge X-ray emission (GRXE) arising from the scattering of the radiation of bright X-ray binaries (XBs) by the interstellar medium. This scattered component has the same scale height as that of the gaseous disk (∼80 pc) and is therefore thinner than the GRXE of stellar origin (scale height ∼130 pc). The morphology of the scattered component is furthermore expected to trace the clumpy molecular and HI clouds. We calculate this contribution to the GRXE from known Galactic XBs assuming that they are all persistent. The known XBs sample is incomplete, however, because it is flux limited and spans the lifetime of X-ray astronomy (∼50 years), which is very short compared with the characteristic time of 1000−10 000 years that would have contributed to the diffuse emission observed today due to time delays. We therefore also use a simulated sample of sources, to estimate the diffuse emission we should expect in an optimistic case assuming that the X-ray luminosity of our Galaxy is on average similar to that of other galaxies. -
Gravitational Waves from Neutron & Strange-Quark Stars
Gravitational Waves From Neutron & Strange-quark Stars • A billion tons per teaspoon: the history of neutron stars. • The discovery of pulsars and identification with NS. • Are NS really strange- quark stars? Supported by the National Science Foundation http://www.ligo.caltech.edu • GWs from NS and SQS. Gregory Mendell • What will we learn? LIGO Hanford Observatory LIGO-G050005-00-W The Neutron Star Idea • Chandrasekhar Supernova 1987A 1931: white dwarf stars will collapse if M > 1.4 solar masses. Then what? • Baade & Zwicky 1934: suggest SN form NS. • Oppenheimer & Volkoff 1939: work http://www.aao.gov.au/images/captions/aat050.html out NS models. Anglo-Australian Observatory, photo by David Malin. (http://www.jb.man.ac.uk/~pul sar/tutorial/tut/tut.html; LIGO-G050005-00-W Jodrell Bank Tutorial) Discovery of Pulsars • Bell notes “scruff” on chart in 1967. • Close up reveals the first pulsar (pulsating radio source) with P = 1.337 s. • Rises & sets with the stars: source is extraterrestrial. • LGM? • More pulsars discovered indicating pulsars are natural phenomena. www.jb.man.ac.uk/~pulsar/tutorial/LIGO-G050005tut/node3.html#SECTION00012000000000000000-00-W A. G. Lyne and F. G. Smith. Pulsar Astronomy. Cambridge University Press, 1990. Pulsars = Neutron Stars • Gold 1968: pulsars are rotating neutron stars. •orbital motion •oscillation •rotation • From the Sung-shih (Chinese Astronomical Treatise): "On the 1st year of the Chi-ho reign period, 5th month, chi-chou (day) [1054 AD], a guest star appeared…south-east of Tian-kuan [Aldebaran].(http://super.colorado.edu/~a str1020/sung.html) http://antwrp.gsfc.nasa.gov/apod/ap991122.html Crab Nebula: FORS Team, 8.2-meter VLT, ESO LIGO-G050005-00-W Pulsars Seen and Heard Play Me (Vela Pulsar) http://www.jb.m an.ac.uk/~pulsa r/Education/Sou nds/sounds.html (Crab Pulsar) Jodrell Bank Observatory, Dept. -
Arxiv:1704.06321V1 [Astro-Ph.GA] 20 Apr 2017
Accepted for Publication in the Astrophysical Journal Preprint typeset using LATEX style emulateapj v. 12/16/11 THE HIERARCHICAL DISTRIBUTION OF THE YOUNG STELLAR CLUSTERS IN SIX LOCAL STAR FORMING GALAXIES K. Grasha1, D. Calzetti1, A. Adamo2, H. Kim3, B.G. Elmegreen4, D.A. Gouliermis5,6, D.A. Dale7, M. Fumagalli8, E.K. Grebel9, K.E. Johnson10, L. Kahre11, R.C. Kennicutt12, M. Messa2, A. Pellerin13, J.E. Ryon14, L.J. Smith15, F. Shabani8, D. Thilker16, L. Ubeda14 Accepted for Publication in the Astrophysical Journal ABSTRACT We present a study of the hierarchical clustering of the young stellar clusters in six local (3{15 Mpc) star-forming galaxies using Hubble Space Telescope broad band WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We have identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40{60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr whereas associations show evidence of disruption occurring very quickly after their formation. -
Monthly Notes of the Astronomical Society of Southern Africa
ISSN 0024-8266 mnassa Monthly Notes of the Astronomical Society of Southern Africa Vol 72 Nos 5 & 6 June 2013 mmonthly notes nof the astronomicalas societys of southerna africa JUNE 2013 Vol 72 Nos 5 & 6 Roy Smith (1930 – 2013) 89 G Roberts..................................................................................................................................... Synchronizing High-speed Optical Measurements with amateur equipment A van Staden...................................................................................................................... 91 GRB130427A detected by Supersid monitor B Fraser........................................................................................................................................101 Moonwatch in South Africa: 1957–1958 J Hers........................................................................................................................................... 103 IGY Reminiscenes WS Finsen....................................................................................................................................117 Astronomical Colloquia....................................................................................................... 122 Deep-sky Delights Celestial Home of Stars Magda Streicher................................................................................................................ 127 • AmateurA high-speed photometry • Moonwatch in SA: 1957–1958 • mateu • GRB130427Ar high detected by Supersid monitor • IGY Reminiscenes • GRB -
Dorado and Its Member Galaxies II: a UVIT Picture of the NGC 1533 Substructure
J. Astrophys. Astr. (2021) 42:31 Ó Indian Academy of Sciences https://doi.org/10.1007/s12036-021-09690-xSadhana(0123456789().,-volV)FT3](0123456789().,-volV) SCIENCE RESULTS Dorado and its member galaxies II: A UVIT picture of the NGC 1533 substructure R. RAMPAZZO1,2,* , P. MAZZEI2, A. MARINO2, L. BIANCHI3, S. CIROI4, E. V. HELD2, E. IODICE5, J. POSTMA6, E. RYAN-WEBER7, M. SPAVONE5 and M. USLENGHI8 1INAF Osservatorio Astrofisico di Asiago, Via Osservatorio 8, 36012 Asiago, Italy. 2INAF Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padua, Italy. 3Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA. 4Department of Physics and Astronomy, University of Padova, Vicolo dell’Osservatorio 3, 35122 Padua, Italy. 5INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Naples, Italy. 6University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada. 7Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. 8INAF-IASF, Via A. Curti, 12, 20133 Milan, Italy. *Corresponding Author. E-mail: [email protected] MS received 30 October 2020; accepted 17 December 2020 Abstract. Dorado is a nearby (17.69 Mpc) strongly evolving galaxy group in the Southern Hemisphere. We are investigating the star formation in this group. This paper provides a FUV imaging of NGC 1533, IC 2038 and IC 2039, which form a substructure, south west of the Dorado group barycentre. FUV CaF2-1 UVIT-Astrosat images enrich our knowledge of the system provided by GALEX. In conjunction with deep optical wide-field, narrow-band Ha and 21-cm radio images we search for signatures of the interaction mechanisms looking in the FUV morphologies and derive the star formation rate. -
407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical -
From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets Permalink https://escholarship.org/uc/item/9jq3136f Author Perez-Becker, Daniel Alonso Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets By Daniel Alonso Perez-Becker A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Eugene Chiang, Co-chair Professor Christopher McKee, Co-chair Professor Eliot Quataert Professor Geoffrey Marcy Fall 2013 From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets Copyright 2013 by Daniel Alonso Perez-Becker 1 Abstract From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets by Daniel Alonso Perez-Becker Doctor of Philosophy in Physics University of California, Berkeley Professor Eugene Chiang, Co-chair Professor Christopher McKee, Co-chair This dissertation is composed of three independent projects in astrophysics concerning phenomena that are concurrent with the birth, life, and death of planets. In Chapters 1 & 2, we study surface layer accretion in protoplanetary disks driven stellar X-ray and far-ultraviolet (FUV) radiation. In Chapter 3, we identify the dynamical mechanisms that control atmospheric heat redistribution on hot Jupiters. Finally, in Chapter 4, we characterize the death of low-mass, short-period rocky planets by their evaporation into a dusty wind.