From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets

Total Page:16

File Type:pdf, Size:1020Kb

From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets UC Berkeley UC Berkeley Electronic Theses and Dissertations Title From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets Permalink https://escholarship.org/uc/item/9jq3136f Author Perez-Becker, Daniel Alonso Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets By Daniel Alonso Perez-Becker A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Eugene Chiang, Co-chair Professor Christopher McKee, Co-chair Professor Eliot Quataert Professor Geoffrey Marcy Fall 2013 From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets Copyright 2013 by Daniel Alonso Perez-Becker 1 Abstract From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets by Daniel Alonso Perez-Becker Doctor of Philosophy in Physics University of California, Berkeley Professor Eugene Chiang, Co-chair Professor Christopher McKee, Co-chair This dissertation is composed of three independent projects in astrophysics concerning phenomena that are concurrent with the birth, life, and death of planets. In Chapters 1 & 2, we study surface layer accretion in protoplanetary disks driven stellar X-ray and far-ultraviolet (FUV) radiation. In Chapter 3, we identify the dynamical mechanisms that control atmospheric heat redistribution on hot Jupiters. Finally, in Chapter 4, we characterize the death of low-mass, short-period rocky planets by their evaporation into a dusty wind. Chapters 1 & 2: Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. We find that disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by condensates—ranging from µm-sized dust to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. In contrast, ionization by stellar FUV radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. Even though the FUV-ionized layer is 10–100 times more turbulent than the X-ray-ionized layer, mass accretion rates of both∼ layers are comparable because FUV photons penetrate to lower surface densities than do X-rays. We conclude that surface layer accretion occurs at observationally significant rates at radii & 1–10 AU. At smaller radii, both X-ray- and FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance and an additional means of transport is needed. In the case of transitional disks, it could be provided by planets. Chapter 3: Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides than colder planets. Here we present a shallow water model of the atmospheric dynamics on synchronously rotating planets that explains why heat 2 redistribution efficiency drops as stellar insolation rises. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τwave, plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth’s tropics. When atmospheric drag can be neglected, the transition from small to large day-night p temperature contrasts occurs when τwave τrad=Ω, where τrad is the radiative relaxation time of the atmosphere and Ω is the planetary∼ rotation frequency. Our results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τrad and the horizontal day-night advection timescale, τadv. Chapter 4: Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. Here we construct a radiative-hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses . 0:1M⊕ (less than twice the mass of Mercury) and surface temperatures & 2000 K are found to disintegrate entirely in . 10 Gyr. When our model is applied to Kepler planet candidate KIC 12557548b—which is believed to be a rocky _ body evaporating at a rate of M & 0:1 M⊕/Gyr—our model yields a present-day planet mass of . 0:02 M⊕ or less than about twice the mass of the Moon. Mass loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyrs with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass loss (which KIC 12557548b has entered). We estimate that for every object like KIC 12557548b, there should be 10–100 close-in quiescent progenitors with sub-day periods whose hard-surface transits may be detectable by Kepler—if the progenitors are as large as their maximal, Mercury-like sizes. KIC 12557548b may have lost 70% of its formation mass; today we may be observing its naked iron core. ∼ i A mis padres ii Contents List of Figuresv List of Tables viii Acknowledgments ix 1 Surface Layer Accretion in Transitional and Conventional Disks: from Polycyclic Aromatic Hydrocarbons to Planets1 1.1 Introduction....................................2 1.1.1 The Need for Companions........................2 1.1.2 Companions are Not Enough: The Case for the Magnetorotational Instability for the Origin of Disk Viscosity...............5 1.1.3 The Threat Posed by Polycyclic Aromatic Hydrocarbons to the MRI6 1.2 Model for Disk Ionization............................8 1.2.1 X-ray and Cosmic-ray Ionization Rates and Gas Densities......8 1.2.2 Gas Temperature............................. 11 1.2.3 Chemical Network............................ 12 1.2.4 Properties and Abundances of Trace Species.............. 14 1.2.5 Collisional Charging of PAHs and Grains................ 17 1.2.6 Numerical Method of Solution...................... 19 1.3 Results....................................... 20 1.3.1 Charge Distributions on PAHs and Grains............... 21 1.3.2 Ionization Fraction vs. PAH Abundance................ 21 1.3.3 Degree of Magnetic Coupling: Re and Am ............... 31 1.3.4 Comparison with Previous Work: Ionization Fractions......... 37 1.4 Summary and Discussion............................. 41 1.4.1 Future Directions............................. 42 2 Surface Layer Accretion in Conventional and Transitional Disks Driven by Far-Ultraviolet Ionization 45 2.1 Introduction.................................... 46 2.2 Model for FUV ionization............................ 50 Contents iii 2.2.1 FUV Luminosity............................. 50 2.2.2 Total Gas Columns and Densities.................... 51 2.2.3 Gas Temperature............................. 51 2.2.4 Very Small Grains (VSGs)........................ 52 2.2.5 Polycyclic Aromatic Hydrocarbons (PAHs)............... 53 2.2.6 H2: Photodissociation and Re-Formation on Grains.......... 54 2.2.7 Carbon: Abundance and Ionization Equilibrium............ 55 2.2.8 Sulfur: Abundance and Ionization Equilibrium............. 56 2.2.9 Numerical Method of Solution...................... 57 2.3 Results for MRI-Active Surface Densities.................... 57 2.3.1 Photodissociation and Ionization Fronts................ 57 2.3.2 MRI-Active Surface Density Σ∗ ..................... 59 2.3.3 Parameter Survey, Including Sensitivity to PAHs........... 62 2.3.4 Hall Diffusion............................... 65 2.3.5 The Possibility of Turbulent Mixing: Chemical Equilibration Timescale vs. Dynamical Timescale......................... 66 2.4 Summary and Implications for Disk Accretion................. 66 2.4.1 Transitional Disks............................. 71 3 Atmospheric Heat Redistribution on Hot Jupiters 74 3.1 Introduction.................................... 75 3.2 The Model..................................... 80 3.3 Numerical Solutions................................ 87 3.3.1 Basic Behavior of the Solutions..................... 87 3.3.2 Physical Explanation for Forcing Amplitude Dependence....... 88 3.3.3 Metric for the Day-Night Contrast................... 89 3.4 Analytic Theory for Day-Night Differences................... 91 3.4.1 Drag-dominated: Valid for Both Equatorial and Non-equatorial Regions 96 3.4.2 Coriolis-dominated: Valid for Non-equatorial Regions Only...... 96 3.4.3 Advection- or Vertical-transport-dominated: Valid for Ro & 1 .... 97 3.5 Interpretation of Theory............................. 98 3.5.1 Timescale Comparison.......................... 98 3.5.2 Vertical Advection............................ 101 3.5.3 Wave Adjustment Mechanism...................... 102 3.6 Application to Hot Jupiter Observations.................... 104 3.7 Conclusions.................................... 105 4 Catastrophic Evaporation of Rocky Planets 108 4.1 Introduction...................................
Recommended publications
  • Echo Exoplanet Characterisation Observatory
    Exp Astron (2012) 34:311–353 DOI 10.1007/s10686-012-9303-4 ORIGINAL ARTICLE EChO Exoplanet characterisation observatory G. Tinetti · J. P. Beaulieu · T. Henning · M. Meyer · G. Micela · I. Ribas · D. Stam · M. Swain · O. Krause · M. Ollivier · E. Pace · B. Swinyard · A. Aylward · R. van Boekel · A. Coradini · T. Encrenaz · I. Snellen · M. R. Zapatero-Osorio · J. Bouwman · J. Y-K. Cho · V. Coudé du Foresto · T. Guillot · M. Lopez-Morales · I. Mueller-Wodarg · E. Palle · F. Selsis · A. Sozzetti · P. A. R. Ade · N. Achilleos · A. Adriani · C. B. Agnor · C. Afonso · C. Allende Prieto · G. Bakos · R. J. Barber · M. Barlow · V. Batista · P. Bernath · B. Bézard · P. Bordé · L. R. Brown · A. Cassan · C. Cavarroc · A. Ciaravella · C. Cockell · A. Coustenis · C. Danielski · L. Decin · R. De Kok · O. Demangeon · P. Deroo · P. Doel · P. Drossart · L. N. Fletcher · M. Focardi · F. Forget · S. Fossey · P. Fouqué · J. Frith · M. Galand · P. Gaulme · J. I. González Hernández · O. Grasset · D. Grassi · J. L. Grenfell · M. J. Griffin · C. A. Griffith · U. Grözinger · M. Guedel · P. Guio · O. Hainaut · R. Hargreaves · P. H. Hauschildt · K. Heng · D. Heyrovsky · R. Hueso · P. Irwin · L. Kaltenegger · P. Kervella · D. Kipping · T. T. Koskinen · G. Kovács · A. La Barbera · H. Lammer · E. Lellouch · G. Leto · M. A. Lopez Valverde · M. Lopez-Puertas · C. Lovis · A. Maggio · J. P. Maillard · J. Maldonado Prado · J. B. Marquette · F. J. Martin-Torres · P. Maxted · S. Miller · S. Molinari · D. Montes · A. Moro-Martin · J. I. Moses · O. Mousis · N. Nguyen Tuong · R.
    [Show full text]
  • In-System'' Fission-Events: an Insight Into Puzzles of Exoplanets and Stars?
    universe Review “In-System” Fission-Events: An Insight into Puzzles of Exoplanets and Stars? Elizabeth P. Tito 1,* and Vadim I. Pavlov 2,* 1 Scientific Advisory Group, Pasadena, CA 91125, USA 2 Faculté des Sciences et Technologies, Université de Lille, F-59000 Lille, France * Correspondence: [email protected] (E.P.T.); [email protected] (V.I.P.) Abstract: In expansion of our recent proposal that the solar system’s evolution occurred in two stages—during the first stage, the gaseous giants formed (via disk instability), and, during the second stage (caused by an encounter with a particular stellar-object leading to “in-system” fission- driven nucleogenesis), the terrestrial planets formed (via accretion)—we emphasize here that the mechanism of formation of such stellar-objects is generally universal and therefore encounters of such objects with stellar-systems may have occurred elsewhere across galaxies. If so, their aftereffects may perhaps be observed as puzzling features in the spectra of individual stars (such as idiosyncratic chemical enrichments) and/or in the structures of exoplanetary systems (such as unusually high planet densities or short orbital periods). This paper reviews and reinterprets astronomical data within the “fission-events framework”. Classification of stellar systems as “pristine” or “impacted” is offered. Keywords: exoplanets; stellar chemical compositions; nuclear fission; origin and evolution Citation: Tito, E.P.; Pavlov, V.I. “In-System” Fission-Events: An 1. Introduction Insight into Puzzles of Exoplanets As facilities and techniques for astronomical observations and analyses continue to and Stars?. Universe 2021, 7, 118. expand and gain in resolution power, their results provide increasingly detailed information https://doi.org/10.3390/universe about stellar systems, in particular, about the chemical compositions of stellar atmospheres 7050118 and structures of exoplanets.
    [Show full text]
  • Mineralogy of Super-Earth Planets
    This article was originally published in Treatise on Geophysics, Second Edition, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Duffy T., Madhusudhan N. and Lee K.K.M Mineralogy of Super-Earth Planets. In: Gerald Schubert (editor-in-chief) Treatise on Geophysics, 2nd edition, Vol 2. Oxford: Elsevier; 2015. p. 149-178. Author's personal copy 2.07 Mineralogy of Super-Earth Planets T Duffy, Princeton University, Princeton, NJ, USA N Madhusudhan, University of Cambridge, Cambridge, UK KKM Lee, Yale University, New Haven, CT, USA ã 2015 Elsevier B.V. All rights reserved. 2.07.1 Introduction 149 2.07.2 Overview of Super-Earths 150 2.07.2.1 What Is a Super-Earth? 150 2.07.2.2 Observations of Super-Earths 151 2.07.2.3 Interior Structure and Mass–Radius Relationships 151 2.07.2.4 Selected Super-Earths 154 2.07.2.5 Super-Earth Atmospheres 155 2.07.3 Theoretical
    [Show full text]
  • Stsci Newsletter: 1991 Volume 008 Issue 03
    SPACE 'fEIFSCOPE SOENCE ...______._.INSTITUIE Operated for NASA by AURA November 1991 Vol. 8No. 3 HIGHLIGHTS OF THIS ISSUE: HSTSCIENCE HIGHLIGHTS WF/PC OBSERVATIONS OF THE STELLAR O NEW SCIENCE RESULTS ON M87, CRAB PULSAR CUSP IN M87 O COSTAR PROGRESSING WELL The photograph on the left shows one of a set of images of the central regions of the giant ellipti­ O ANSWERS TO YOUR QUESTIONS ABOUT HST DATA cal galaxy M87, obtained in June 1991 withHSI's Wide Field and Planetary Camera {WF/PC). 0 CYCLE 2 PEER REVIEW UNDERWAY Analysis of these images has revealed a stellar cusp in the core of M87, consistent with the pres­ ence of a massive black hole in its nucleus. A combined approach of image deconvolution and modelling has made it possible to investigate the starlight distribution in M87 down to a limiting radius of about 0'.'04 from the nucleus (or about 3 pc from the nucleus if the Virgo cluster is at 16 Mpc). The results show that the central struc­ ture of M87 can be described by three compo­ nents: a power-law starlight profile with an r·114 slope which continues unabated into the center, an unresolved central point source, and optical coun­ terparts of the jet knots identified by VLBI obser­ vations. In both the V- and /-band Planetary Camera images, the stellar cusp is consistent with the black-hole model proposed for M87 by Young et al. in 1978; in this model, there is a central mas­ sive object of about 3 x 109 Me.
    [Show full text]
  • Terrestrial Planets
    Terrestrial Planets First ever ‘whole Earth’ picture from deep space, taken by Bill Anders on Apollo 8 Apollo 8 crew, Bill Anders centre: The Earth is just a planet courtesy Nasa 1- 4 from the Sun Image courtesy: http://commons.wikimedia.org/wiki/Image:Terrestrial_planet_size_comparisons_edit.jpg Mercury, Venus, Earth and Mars are four astonishingly different planets Mercury and Venus have only been seen in any detail within the last 30 years Mercury in sight Courtesy NASA (Mariner 10) Mercury is visible only soon after the setting sun or shortly before dawn the Mariner 10 probe (1974/75) is the source of most information about Mercury – Messenger, launched 2004, first flypast in 2008 and orbit Mercury in 2011. ESA’s BepiColombo, to be launched in 2013 Mercury Mercury is like the Earth inside and the Moon outside Mercury has had a cooling and bombardment history similar to the moon It appears as cratered lava with scarps Its rocks are Earth-like Mariner 10 image Messenger images ↑ Double-ringed crater – a Mercury feature courtesy: http://messenger.jhuapl.edu/gallery/sciencePhotos/pics/S trom02.jpg ← Courtesy: http://messenger.jhuapl.edu/gal lery/sciencePhotos/pics/EN010 8828161M.jpg Messenger image Courtesy: http://messenger.jhuapl.edu/gallery/sciencePhotos/pics/Prockter06.jpg Mercury Close-up Mercury’s topography was formed under stronger gravity than on the Moon The Caloris basin is an impact crater ~1400 km across, beneath which is thought to be a dense mass 2 Mercury’s rotation period is exactly /3 of its orbital period
    [Show full text]
  • A Thin Diffuse Component of the Galactic Ridge X-Ray Emission and Heating of the Interstellar Medium Contributed by the Radiation of Galactic X-Ray Binaries
    A&A 564, A107 (2014) Astronomy DOI: 10.1051/0004-6361/201323332 & c ESO 2014 Astrophysics A thin diffuse component of the Galactic ridge X-ray emission and heating of the interstellar medium contributed by the radiation of Galactic X-ray binaries Margherita Molaro1, Rishi Khatri1, and Rashid A. Sunyaev1,2 1 Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany e-mail: [email protected] 2 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia Received 23 December 2013 / Accepted 14 January 2014 ABSTRACT We predict athindiffuse component of the Galactic ridge X-ray emission (GRXE) arising from the scattering of the radiation of bright X-ray binaries (XBs) by the interstellar medium. This scattered component has the same scale height as that of the gaseous disk (∼80 pc) and is therefore thinner than the GRXE of stellar origin (scale height ∼130 pc). The morphology of the scattered component is furthermore expected to trace the clumpy molecular and HI clouds. We calculate this contribution to the GRXE from known Galactic XBs assuming that they are all persistent. The known XBs sample is incomplete, however, because it is flux limited and spans the lifetime of X-ray astronomy (∼50 years), which is very short compared with the characteristic time of 1000−10 000 years that would have contributed to the diffuse emission observed today due to time delays. We therefore also use a simulated sample of sources, to estimate the diffuse emission we should expect in an optimistic case assuming that the X-ray luminosity of our Galaxy is on average similar to that of other galaxies.
    [Show full text]
  • Arxiv:1711.02098V2 [Astro-Ph.EP] 13 Jan 2018
    Draft version January 16, 2018 Typeset using LATEX twocolumn style in AASTeX61 SIMULATED JWST/NIRISS TRANSIT SPECTROSCOPY OF ANTICIPATED TESS PLANETS COMPARED TO SELECT DISCOVERIES FROM SPACE-BASED AND GROUND-BASED SURVEYS Dana R. Louie,1 Drake Deming,1, 2 Loic Albert,3 L. G. Bouma,4 Jacob Bean,5, 2 and Mercedes Lopez-Morales6, 2 1Department of Astronomy, University of Maryland, College Park, MD 20742, USA 2TESS Atmospheric Characterization Working Group 3Institut de recherche sur les exoplanetes (iREx), Universite de Montreal, Montreal, Quebec, Canada 4Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA 5Department of Astronomy and Astrophysics, University of Chicago, IL 60637, USA 6Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA Submitted to PASP ABSTRACT The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2-year wide-field survey mission, discov- ering over a thousand terrestrial, super-Earth and sub-Neptune-sized exoplanets (Rpl ≤ 4R⊕) potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). This work aims to understand the suitability of anticipated TESS planet discoveries for atmospheric characterization by JWST's Near InfraRed Imager and Slitless Spectrograph (NIRISS) by employing a simulation tool to estimate the signal-to-noise (S/N) achievable in transmission spectroscopy. We applied this tool to Monte Carlo predictions of the TESS expected planet yield and then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor.
    [Show full text]
  • Part 1: the 1.7 and 3.9 Earth Radii Rule
    Hi this is Steve Nerlich from Cheap Astronomy www.cheapastro.com and this is What are exoplanets made of? Part 1: The 1.7 and 3.9 earth Radii rule. As of August 2016, the current count of confirmed exoplanets is up around 3,400 in 2,617 systems – with 590 of those systems confirmed to be multiplanet systems. And the latest thinking is that if you want to understand what exoplanets are made of you need to appreciate the physical limits of planet-hood, which are defined by the boundaries of 1.7 and 3.9 Earth radii . Consider that the make-up of an exoplanet is largely determined by the elemental make up of its protoplanetary disk. While most material in the Universe is hydrogen and helium – these are both tenuous gases. In order to generate enough gravity to hang on to them, you need a lot of mass to start with. So, if you’re Earth, or anything up to 1.7 times the radius of Earth – you’ve got no hope of hanging onto more than a few traces of elemental hydrogen and helium. Indeed, any exoplanet that’s less than 1.7 Earth radii has to be primarily composed of non-volatiles – that is, things that don’t evaporate or blow away easily – to have any chance of gravitationally holding together. A non-volatile exoplanet might be made of rock – which for our Solar System is a primarily silicon/oxygen based mineral matrix, but as we’ll hear, small sub-1.7 Earth radii exoplanets could be made of a whole range of other non-volatile materials.
    [Show full text]
  • Super-Dense Remnants of Gas Giant Exoplanets
    EPSC Abstracts Vol. 8, EPSC2013-986-1, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Super-dense remnants of gas giant exoplanets A. Mocquet (1), O. Grasset (1) and C. Sotin (2) (1) Laboratoire de Planétologie et Géodynamique UMR 6112, Nantes University, France ([email protected] / Fax:+33-2-51125268, (2) Jet Propulsion Laboratory, Caltech, Pasadena, California, USA Abstract of metallic materials is performed through the Mie- Grüneisen-Debye theory, which provides comparable The masses that have been observed for three large results to both ANEOS and Thomas-Fermi-Dirac exoplanets, Kepler-52b, Kepler-52c, and Kepler-57b, formulations up to a few tens of TPa [2]. The are between 30 and 100 times the Earth mass, which mechanical effects induced by the loss of the massive implies densities higher than iron planets of the same atmosphere are described by a pressure unloading of sizes. We propose that these planets could represent the solid core surface, and by a consequent increase the naked solid cores of gas giants that would have of volume and decrease of the density. Following the lost their atmospheres, for instance during their methods employed to investigate the deformation of migration towards their star, and investigate the the Earth’s mantle by surface loads [4], the evolution conditions under which the density of these cores of the unloading and associated decompression could remain close to their initial highly pressurized processes, is assessed by the convolution of a time- state. dependent source, the extensive surface stress, with the time varying viscoelastic response of the 1.
    [Show full text]
  • Composition and Fate of Short-Period Super-Earths: the Case of Corot-7B
    Astronomy & Astrophysics manuscript no. corot7b_Rv7pdf c ESO 2018 November 12, 2018 Composition and fate of short-period super-Earths The case of CoRoT-7b D. Valencia1, M. Ikoma1;2, T. Guillot1, and N. Nettelmann3 1 Observatoire de la C^oted'Azur, Universit´ede Nice-Sophia Antipolis, CNRS UMR 6202, BP 4229, F-06304 Nice Cedex 4, France 2 Dept. of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan 3 Institut f¨urPhysik, Universit¨atRostock, D-18051 Rostock, Germany Preprint online version: November 12, 2018 ABSTRACT Context. The discovery of CoRoT-7b, a planet of radius 1:68 ± 0:09 R⊕, mass 4:8 ± 0:8; M⊕ and orbital period of 0:854 days demonstrates that small planets can orbit extremely close to their star. Aims. Several questions arise concerning this planet, in particular concerning its possible composition, and fate. Methods. We use knowledge of hot Jupiters, mass loss estimates and models for the interior structure and evolution of planets to understand its composition, structure and evolution. Results. The inferred mass and radius of CoRoT-7b are consistent with a rocky planet that would be significantly depleted in iron relative to the Earth. However, a one sigma increase in mass (5:6 M⊕) and one sigma decrease in size (1:59 R⊕) would make the planet compatible with an Earth-like composition (33% iron, 67% silicates). Alternatively, it is possible that CoRoT-7b contains a significant amount of volatiles. For a planet made of an Earth-like interior and an outer volatile-rich vapor envelope, an equally good fit to the measured mass and radius is found for a mass of the vapor envelope equal to 3% (and up to 10% at most) of the planetary mass.
    [Show full text]
  • Nasa's Next Four Large Telescopes Hearing Committee on Science, Space, and Technology House of Representatives
    NASA’S NEXT FOUR LARGE TELESCOPES HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION DECEMBER 6, 2017 Serial No. 115–41 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–680PDF WASHINGTON : 2018 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida AMI BERA, California THOMAS MASSIE, Kentucky ELIZABETH H. ESTY, Connecticut JIM BRIDENSTINE, Oklahoma MARC A. VEASEY, Texas RANDY K. WEBER, Texas DONALD S. BEYER, JR., Virginia STEPHEN KNIGHT, California JACKY ROSEN, Nevada BRIAN BABIN, Texas JERRY MCNERNEY, California BARBARA COMSTOCK, Virginia ED PERLMUTTER, Colorado BARRY LOUDERMILK, Georgia PAUL TONKO, New York RALPH LEE ABRAHAM, Louisiana BILL FOSTER, Illinois DRAIN LAHOOD, Illinois MARK TAKANO, California DANIEL WEBSTER, Florida COLLEEN HANABUSA, Hawaii JIM BANKS, Indiana CHARLIE CRIST, Florida ANDY BIGGS, Arizona ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California AMI BERA, California, Ranking Member FRANK D. LUCAS, Oklahoma ZOE LOFGREN, California MO BROOKS, Alabama DONALD S. BEYER, JR., Virginia BILL POSEY, Florida MARC A. VEASEY, Texas JIM BRIDENSTINE, Oklahoma DANIEL LIPINSKI, Illinois STEPHEN KNIGHT, California ED PERLMUTTER, Colorado BARBARA COMSTOCK, Virginia CHARLIE CRIST, Florida RALPH LEE ABRAHAM, Louisiana BILL FOSTER, Illinois DANIEL WEBSTER, Florida EDDIE BERNICE JOHNSON, Texas JIM BANKS, Indiana ANDY BIGGS, Arizona NEAL P.
    [Show full text]
  • Numerical Models of Galaxy Evolution: Black Hole Feedback and Disk Heating by Jackson Eugene Debuhr
    Numerical Models of Galaxy Evolution: Black Hole Feedback and Disk Heating by Jackson Eugene DeBuhr A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Chung-Pei Ma, Co-Chair Professor Eliot Quataert, Co-Chair Professor Christopher McKee Professor Leo Blitz Spring 2012 Numerical Models of Galaxy Evolution: Black Hole Feedback and Disk Heating Copyright 2012 by Jackson Eugene DeBuhr 1 Abstract Numerical Models of Galaxy Evolution: Black Hole Feedback and Disk Heating by Jackson Eugene DeBuhr Doctor of Philosophy in Physics University of California, Berkeley Professor Chung-Pei Ma, Co-Chair Professor Eliot Quataert, Co-Chair This thesis explores two topics in contemporary galaxy evolution using numerical models and N-body simulation: feedback in active galactic nuclei and the heating of stellar disks. Two numerical models of feedback from active galactic nuclei are developed and applied to the case of a major merger between two disk galaxies. Accretion into central black holes is modeled via a subgrid prescription based on angular momentum transport on unresolved scales. Feedback from black holes is modeled in two ways, both of which deposit a momentum τL=c into the surroundings, where L is the luminosity of radiation produced by the galactic nucleus. In the first model, the momentum is divided equally among the nearby gas particles to model processes like the absorption of ultraviolet light by dust grains. The second model deposits the same amount of momentum into the surroundings, but it does so by launching a wind with a fixed speed, which only has a direct effect on a small fraction of the gas in the black hole's vicinity.
    [Show full text]