THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
Arxiv:1904.07129V1 [Astro-Ph.GA] 15 Apr 2019
Draft version April 16, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 SPIRE SPECTROSCOPY OF EARLY TYPE GALAXIES Ryen Carl Lapham and Lisa M. Young Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801; [email protected], [email protected] Draft version April 16, 2019 ABSTRACT We present SPIRE spectroscopy for 9 early-type galaxies (ETGs) representing the most CO-rich and far-infrared (FIR) bright galaxies of the volume-limited Atlas3D sample. Our data include detections of mid to high J CO transitions (J=4-3 to J=13-12) and the [C I] (1-0) and (2-1) emission lines. CO spectral line energy distributions (SLEDs) for our ETGs indicate low gas excitation, barring NGC 1266. We use the [C I] emission lines to determine the excitation temperature of the neutral gas, as well as estimate the mass of molecular hydrogen. The masses agree well with masses derived from CO, making this technique very promising for high redshift galaxies. We do not find a trend between the [N II] 205 flux and the infrared luminosity, but we do find that the [N II] 205/CO(6-5) line ratio is correlated with the 60/100 µm Infrared Astronomical Satellite (IRAS) colors. Thus the [N II] 205/CO(6-5) ratio can be used to infer a dust temperature, and hence the intensity of the interstellar radiation field (ISRF). Photodissociation region (PDR) models show that use of [C I] and CO lines in addition to the typical [C II], [O I], and FIR fluxes drive the model solutions to higher densities and lower values of G0. -
Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al. -
Linking Dust Emission to Fundamental Properties in Galaxies: the Low-Metallicity Picture?
A&A 582, A121 (2015) Astronomy DOI: 10.1051/0004-6361/201526067 & c ESO 2015 Astrophysics Linking dust emission to fundamental properties in galaxies: the low-metallicity picture? A. Rémy-Ruyer1;2, S. C. Madden2, F. Galliano2, V. Lebouteiller2, M. Baes3, G. J. Bendo4, A. Boselli5, L. Ciesla6, D. Cormier7, A. Cooray8, L. Cortese9, I. De Looze3;10, V. Doublier-Pritchard11, M. Galametz12, A. P. Jones1, O. Ł. Karczewski13, N. Lu14, and L. Spinoglio15 1 Institut d’Astrophysique Spatiale, CNRS, UMR 8617, 91405 Orsay, France e-mail: [email protected]; [email protected] 2 Laboratoire AIM, CEA/IRFU/Service d’Astrophysique, Université Paris Diderot, Bât. 709, 91191 Gif-sur-Yvette, France 3 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Laboratoire d’Astrophysique de Marseille – LAM, Université d’Aix-Marseille & CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France 6 Department of Physics, University of Crete, 71003 Heraklion, Greece 7 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 8 Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 9 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, Hawthorn VIC 3122, Australia 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Max-Planck für Extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching-bei-München, Germany 12 European Southern Observatory, Karl-Schwarzschild-Str. -
Download And/Or Print One Copy of Any Article(S) in LJMU Research Online to Facilitate Their Private Study Or for Non-Commercial Research
LJMU Research Online Tartaglia, L, Sand, DJ, Valenti, S, Wyatt, S, Anderson, JP, Arcavi, I, Ashall, C, Botticella, MT, Cartier, R, Chen, TW, Cikota, A, Coulter, D, Valle, MD, Foley, RJ, Gal-Yam, A, Galbany, L, Gall, C, Haislip, JB, Harmanen, J, Hosseinzadeh, G, Howell, DA, Hsiao, EY, Inserra, C, Jha, SW, Kankare, E, Kilpatrick, CD, Kouprianov, VV, Kuncarayakti, H, Maccarone, TJ, Maguire, K, Mattila, S, Mazzali, PA, McCully, C, Melandri, A, Morrell, N, Phillips, MM, Pignata, G, Piro, AL, Prentice, SJ, Reichart, DE, Rojas-Bravo, C, Smartt, SJ, Smith, KW, Sollerman, J, Stritzinger, MD, Sullivan, M, Taddia, F and Young, DR The early detection and follow-up of the highly obscured Type II supernova 2016ija/DLT16am http://researchonline.ljmu.ac.uk/8049/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Tartaglia, L, Sand, DJ, Valenti, S, Wyatt, S, Anderson, JP, Arcavi, I, Ashall, C, Botticella, MT, Cartier, R, Chen, TW, Cikota, A, Coulter, D, Valle, MD, Foley, RJ, Gal-Yam, A, Galbany, L, Gall, C, Haislip, JB, Harmanen, J, Hosseinzadeh, G, Howell, DA, Hsiao, EY, Inserra, C, Jha, SW, Kankare, E, LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Hot Interstellar Matter in Elliptical Galaxies
Hot Interstellar Matter in Elliptical Galaxies For further volumes: http://www.springer.com/series/5664 Astrophysics and Space Science Library EDITORIAL BOARD Chairman W. B. BURTON, National Radio Astronomy Observatory, Charlottesville, Virginia, U.S.A. ([email protected]); University of Leiden, The Netherlands ([email protected]) F. BERTOLA, University of Padua, Italy J. P. CASSINELLI, University of Wisconsin, Madison, U.S.A. C. J. CESARSKY, Commission for Atomic Energy, Saclay, France P. EHRENFREUND, Leiden University, The Netherlands O. ENGVOLD, University of Oslo, Norway A. HECK, Strasbourg Astronomical Observatory, France E. P. J. VAN DEN HEUVEL, University of Amsterdam, The Netherlands V. M. KASPI, McGill University, Montreal, Canada J. M. E. KUIJPERS, University of Nijmegen, The Netherlands H. VAN DER LAAN, University of Utrecht, The Netherlands P. G. MURDIN, Institute of Astronomy, Cambridge, UK F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy V. RADHAKRISHNAN, Raman Research Institute, Bangalore, India B . V. S O M OV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia Dong-Woo Kim Silvia Pellegrini Editors Hot Interstellar Matter in Elliptical Galaxies 123 Editors Dong-Woo Kim Harvard Smithsonian Center for Astrophysics Garden Street 60 02138 Cambridge Massachusetts USA [email protected] Silvia Pellegrini Dipartimento di Astronomia Universita` di Bologna Via Ranzani 1 40127 Bologna Italy [email protected] Cover figure: Chandra image of NGC 7619. From Kim et al. (2008). Reproduced by permission of the AAS. ISSN 0067-0057 ISBN 978-1-4614-0579-5 e-ISBN 978-1-4614-0580-1 DOI 10.1007/978-1-4614-0580-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011938147 c Springer Science+Business Media, LLC 2012 This work is subject to copyright. -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
ATNF News Issue No
Galaxy Pair NGC 1512 / NGC 1510 ATNF News Issue No. 67, October 2009 ISSN 1323-6326 Questacon "astronaut" street performer and visitors at the Parkes Open Days 2009. Credit: Shaun Amy, CSIRO. Cover page image Cover Figure: Multi-wavelength color-composite image of the galaxy pair NGC 1512/1510 obtained using the Digitised Sky Survey R-band image (red), the Australia Telescope Compact Array HI distribution (green) and the Galaxy Evolution Explorer NUV -band image (blue). The Spitzer 24µm image was overlaid just in the center of the two galaxies. We note that in the outer disk the UV emission traces the regions of highest HI column density. See article (page 28) for more information. 2 ATNF News, Issue 67, October 2009 Contents From the Director ...................................................................................................................................................................................................4 CSIRO Medal Winners .........................................................................................................................................................................................5 CSIRO Astronomy and Space Science Unit Formed ........................................................................................................................6 ATNF Distinguished Visitors Program ........................................................................................................................................................6 ATNF Graduate Student Program ................................................................................................................................................................7 -
Arxiv:2009.04090V2 [Astro-Ph.GA] 14 Sep 2020
Research in Astronomy and Astrophysics manuscript no. (LATEX: tikhonov˙Dorado.tex; printed on September 15, 2020; 1:01) Distance to the Dorado galaxy group N.A. Tikhonov1, O.A. Galazutdinova1 Special Astrophysical Observatory, Nizhnij Arkhyz, Karachai-Cherkessian Republic, Russia 369167; [email protected] Abstract Based on the archival images of the Hubble Space Telescope, stellar photometry of the brightest galaxies of the Dorado group:NGC 1433, NGC1533,NGC1566and NGC1672 was carried out. Red giants were found on the obtained CM diagrams and distances to the galaxies were measured using the TRGB method. The obtained values: 14.2±1.2, 15.1±0.9, 14.9 ± 1.0 and 15.9 ± 0.9 Mpc, show that all the named galaxies are located approximately at the same distances and form a scattered group with an average distance D = 15.0 Mpc. It was found that blue and red supergiants are visible in the hydrogen arm between the galaxies NGC1533 and IC2038, and form a ring structure in the lenticular galaxy NGC1533, at a distance of 3.6 kpc from the center. The high metallicity of these stars (Z = 0.02) indicates their origin from NGC1533 gas. Key words: groups of galaxies, Dorado group, stellar photometry of galaxies: TRGB- method, distances to galaxies, galaxies NGC1433, NGC 1533, NGC1566, NGC1672 1 INTRODUCTION arXiv:2009.04090v2 [astro-ph.GA] 14 Sep 2020 A concentration of galaxies of different types and luminosities can be observed in the southern constella- tion Dorado. Among them, Shobbrook (1966) identified 11 galaxies, which, in his opinion, constituted one group, which he called “Dorado”. -
Galaxy Populations in the Antlia Cluster – I
Mon. Not. R. Astron. Soc. 386, 2311–2322 (2008) doi:10.1111/j.1365-2966.2008.13211.x Galaxy populations in the Antlia cluster – I. Photometric properties of early-type galaxies Anal´ıa V. Smith Castelli,1,2† Lilia P. Bassino,1,2† Tom Richtler,3† Sergio A. Cellone,1,2† Cristian Aruta‡ and Leopoldo Infante4† 1Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 2 Instituto de Astrof´ısica de la Plata (CONICET-UNLP) Downloaded from https://academic.oup.com/mnras/article-abstract/386/4/2311/1467775 by guest on 18 December 2018 3Departamento de F´ısica, Universidad de Concepcion,´ Casilla 160-C, Concepcion,´ Chile 4Departamento de Astronom´ıa y Astrof´ısica, Pontificia Universidad Catolica´ de Chile, Casilla 306, Santiago 22, Chile Accepted 2008 March 7. Received 2008 March 6; in original form 2007 November 16 ABSTRACT We present the first colour–magnitude relation (CMR) of early-type galaxies in the central region of the Antlia cluster, obtained from CCD wide-field photometry in the Washington photometric system. Integrated (C − T1) colours, T1 magnitudes, and effective radii have been measured for 93 galaxies (i.e. the largest galaxies sample in the Washington system till now) from the FS90 Antlia Group catalogue. Membership of 37 objects can be confirmed through new radial velocities and data collected from the literature. The resulting colour– magnitude diagram shows that early-type FS90 galaxies that are spectroscopically confirmed Antlia members or that were considered as definite members by FS90, follow a well-defined σ ∼ .