Linking Dust Emission to Fundamental Properties in Galaxies: the Low-Metallicity Picture?

Total Page:16

File Type:pdf, Size:1020Kb

Linking Dust Emission to Fundamental Properties in Galaxies: the Low-Metallicity Picture? A&A 582, A121 (2015) Astronomy DOI: 10.1051/0004-6361/201526067 & c ESO 2015 Astrophysics Linking dust emission to fundamental properties in galaxies: the low-metallicity picture? A. Rémy-Ruyer1;2, S. C. Madden2, F. Galliano2, V. Lebouteiller2, M. Baes3, G. J. Bendo4, A. Boselli5, L. Ciesla6, D. Cormier7, A. Cooray8, L. Cortese9, I. De Looze3;10, V. Doublier-Pritchard11, M. Galametz12, A. P. Jones1, O. Ł. Karczewski13, N. Lu14, and L. Spinoglio15 1 Institut d’Astrophysique Spatiale, CNRS, UMR 8617, 91405 Orsay, France e-mail: [email protected]; [email protected] 2 Laboratoire AIM, CEA/IRFU/Service d’Astrophysique, Université Paris Diderot, Bât. 709, 91191 Gif-sur-Yvette, France 3 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Laboratoire d’Astrophysique de Marseille – LAM, Université d’Aix-Marseille & CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France 6 Department of Physics, University of Crete, 71003 Heraklion, Greece 7 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 8 Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 9 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, Hawthorn VIC 3122, Australia 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Max-Planck für Extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching-bei-München, Germany 12 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching-bei-München, Germany 13 Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK 14 NASA Herschel Science Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125, USA 15 Instituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, 00133 Roma, Italy Received 10 March 2015 / Accepted 14 July 2015 ABSTRACT Aims. In this work, we aim to provide a consistent analysis of the dust properties from metal-poor to metal-rich environments by linking them to fundamental galactic parameters. Methods. We consider two samples of galaxies: the Dwarf Galaxy Survey (DGS) and the Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel (KINGFISH), totalling 109 galaxies, spanning almost 2 dex in metallicity. We collect infrared (IR) to submillimetre (submm) data for both samples and present the complete data set for the DGS sample. We model the observed spectral energy distributions (SED) with a physically-motivated dust model to access the dust properties: dust mass, total-IR luminosity, polycyclic aromatic hydrocarbon (PAH) mass fraction, dust temperature distribution, and dust-to-stellar mass ratio. Results. Using a different SED model (modified black body), different dust composition (amorphous carbon in lieu of graphite), or a different wavelength coverage at submm wavelengths results in differences in the dust mass estimate of a factor two to three, showing that this parameter is subject to non-negligible systematic modelling uncertainties. We find half as much dust with the amorphous carbon dust composition. For eight galaxies in our sample, we find a rather small excess at 500 µm (≤1.5σ). We find that the dust SED of low-metallicity galaxies is broader and peaks at shorter wavelengths compared to more metal-rich systems, a sign of a clumpier medium in dwarf galaxies. The PAH mass fraction and dust temperature distribution are found to be driven mostly by the specific star formation rate, sSFR, with secondary effects from metallicity. The correlations between metallicity and dust mass or total-IR luminosity are direct consequences of the stellar mass-metallicity relation. The dust-to-stellar mass ratios of metal-rich sources follow the well-studied trend of decreasing ratio for decreasing sSFR. The relation is more complex for low-metallicity galaxies with high sSFR, and depends on the chemical evolutionary stage of the source (i.e. gas-to-dust mass ratio). Dust growth processes in the ISM play a key role in the dust mass build-up with respect to the stellar content at high sSFR and low metallicity. Conclusions. We conclude that the evolution of the dust properties from metal-poor to metal-rich galaxies derives from a complex interplay between star formation activity, stellar mass, and metallicity. Key words. dust, extinction – evolution – galaxies: dwarf – galaxies: evolution – infrared: ISM – infrared: galaxies 1. Introduction seeds of this evolution lie in the star formation histories of the galaxies, and in their interaction with their environment through The processes by which galaxies evolve from primordial envi- gas infall, outflows, or mergers. The interstellar medium (ISM) ronments to present-day galaxies are still widely debated, but the plays a key role in this evolution since it is the site of stellar birth ? Figures 12 and 13, Tables 4–9, and Appendices are available in and the repository of stellar ejecta. electronic form at http://www.aanda.org Article published by EDP Sciences A121, page 1 of 42 A&A 582, A121 (2015) Although interstellar dust represents only ∼1% of the to- among which more than half are dwarf galaxies and ∼35% have tal mass of the ISM, it is an important agent in star formation. Z ≤ 1=5 Z . We confirmed with this significant sample of low- Dust absorbs the stellar radiation that would otherwise dissoci- metallicity sources that the dust is warmer at low metallicities ate molecules and thus actively participates in the cooling of the and identified several galaxies with submm excess. This study ISM. It is also a catalyser for molecular gas formation by provid- was conducted using only Herschel data and a modified black ing a surface where atoms can react (Hasegawa & Herbst 1993; body to model the dust emission. In Rémy-Ruyer et al.(2014), Vidali et al. 2004; Le Bourlot et al. 2012; Bron et al. 2014). The we confirmed the higher gas-to-dust mass ratios (G/D) at low presence of dust can increase the H2 formation rate by about two metallicities using the sample of Rémy-Ruyer et al.(2013), and orders of magnitudes compared to H2 formation without dust a semi-empirical spectral energy distribution (SED) model over (Tielens 2005), thus facilitating star formation. the whole IR range. We showed that the G/D is actually higher at Dust forms from the available heavy elements in the explo- low metallicities than that expected from a simple description of sively ejected material from core-collapse supernovæ (SN) and the dust evolution in the ISM. The large scatter in the observed in the quiescent outflows from low-mass stars (Todini & Ferrara G/D is intrinsic to the galaxies and reflects a non-universal dust- 2001; Gomez et al. 2012a,b; Indebetouw et al. 2014; Rowlands to-metal mass ratio (see also Dwek 1998; De Cia et al. 2013; et al. 2014; Matsuura et al. 2015). The refractory dust grains Zafar & Watson 2013; Mattsson et al. 2014a). We showed that may, after their injection into the ISM, grow by accretion or the metallicity was the main driver of the G/D but that the scat- coagulation in dense molecular clouds (Bazell & Dwek 1990; ter was controlled by the different SFHs of the sources. Thus Stepnik et al. 2001, 2003; Köhler et al. 2012, 2015), locking metallicity is not the only parameter shaping the dust properties. even more heavy elements in the solid phase of the ISM (Savage As a follow-up of Rémy-Ruyer et al.(2013, 2014), we aim & Sembach 1996; Whittet 2003). Through destructive processes to provide a consistent picture of the evolution of the dust prop- (such as erosion or sputtering; see Jones et al. 1994, 1996; Serra erties from metal-poor to metal-rich galaxies. On the observa- Díaz-Cano & Jones 2008; Bocchio et al. 2012, 2014), elements tional side, we present the complete catalogue of IR-to-submm are released again into the gas phase. Metallicity, defined as the flux densities for the Dwarf Galaxy Survey (DGS). We use a mass fraction of heavy elements, or “metals”, in the ISM, is thus semi-empirical dust SED model, which accounts for starlight in- a key parameter in studying the evolution of galaxies. tensity mixing in the ISM, to interpret the whole IR-to-submm Understanding how dust properties evolve as a function of observed SEDs. In this work, we extend the range of dust proper- metal enrichment can provide important constraints for galaxy ties and look at the dust mass, the total IR (TIR) luminosity, the evolution studies. Dwarf galaxies in the local Universe are ideal PAH mass fraction, and the dust temperature distribution. The targets for such a study as many of them have low metallicity and dust temperature distribution is directly linked to the SED shape high star formation activity. As such, they present star formation and provides valuable insight into the average dust temperature properties and ISM conditions that are the closest analogues to and the broadness of the FIR peak of the SED. We also discuss those thought to be present in the primordial environments of the the evolution of dust-to-stellar mass ratios and link it to the evo- early Universe (Madau et al. 1998). lution of the G/D observed in Rémy-Ruyer et al.(2014). For the Previous studies already demonstrated that the dust proper- analysis we do not only consider metallicity as our main param- ties in low-metallicity galaxies were notably different from that eter, but also include the specific star formation rate (SFR) and of metal-rich sources. Low-metallicity galaxies harbour warmer the stellar mass.
Recommended publications
  • Arxiv:1904.07129V1 [Astro-Ph.GA] 15 Apr 2019
    Draft version April 16, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 SPIRE SPECTROSCOPY OF EARLY TYPE GALAXIES Ryen Carl Lapham and Lisa M. Young Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801; [email protected], [email protected] Draft version April 16, 2019 ABSTRACT We present SPIRE spectroscopy for 9 early-type galaxies (ETGs) representing the most CO-rich and far-infrared (FIR) bright galaxies of the volume-limited Atlas3D sample. Our data include detections of mid to high J CO transitions (J=4-3 to J=13-12) and the [C I] (1-0) and (2-1) emission lines. CO spectral line energy distributions (SLEDs) for our ETGs indicate low gas excitation, barring NGC 1266. We use the [C I] emission lines to determine the excitation temperature of the neutral gas, as well as estimate the mass of molecular hydrogen. The masses agree well with masses derived from CO, making this technique very promising for high redshift galaxies. We do not find a trend between the [N II] 205 flux and the infrared luminosity, but we do find that the [N II] 205/CO(6-5) line ratio is correlated with the 60/100 µm Infrared Astronomical Satellite (IRAS) colors. Thus the [N II] 205/CO(6-5) ratio can be used to infer a dust temperature, and hence the intensity of the interstellar radiation field (ISRF). Photodissociation region (PDR) models show that use of [C I] and CO lines in addition to the typical [C II], [O I], and FIR fluxes drive the model solutions to higher densities and lower values of G0.
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies
    Mon. Not. R. Astron. Soc. 000, 1{26 (2014) Printed 15 June 2018 (MN LATEX style file v2.2) Spitzer/IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies Seppo Laine,1? Johan H. Knapen,2;3 Juan{Carlos Mu~noz{Mateos,4:5 Taehyun Kim,4;5;6;7 S´ebastienComer´on,8;9 Marie Martig,10 Benne W. Holwerda,11 E. Athanassoula,12 Albert Bosma,12 Peter H. Johansson,13 Santiago Erroz{Ferrer,2;3 Dimitri A. Gadotti,5 Armando Gil de Paz,14 Joannah Hinz,15 Jarkko Laine,8;9 Eija Laurikainen,8;9 Kar´ınMen´endez{Delmestre,16 Trisha Mizusawa,4;17 Michael W. Regan,18 Heikki Salo,8 Kartik Sheth,4;1;19 Mark Seibert,7 Ronald J. Buta,20 Mauricio Cisternas,2;3 Bruce G. Elmegreen,21 Debra M. Elmegreen,22 Luis C. Ho,23;7 Barry F. Madore7 and Dennis Zaritsky24 1Spitzer Science Center - Caltech, MS 314-6, Pasadena, CA 91125, USA 2Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 3Departamento de Astrof´ısica, Universidad de La Laguna, 38206 La Laguna, Spain 4National Radio Astronomy Observatory/NAASC, Charlottesville, 520 Edgemont Road, VA 22903, USA 5European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile 6Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea 7The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA 8Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland 9Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie20, FIN-21500 Piikki¨o 10Max-Planck Institut f¨urAstronomie, K¨onigstuhl17 D-69117 Heidelberg, Germany 11Leiden Observatory, Leiden University, P.O.
    [Show full text]
  • Physical Conditions of the Molecular Gas in Metal-Poor Galaxies? L
    A&A 606, A99 (2017) Astronomy DOI: 10.1051/0004-6361/201731000 & c ESO 2017 Astrophysics Physical conditions of the molecular gas in metal-poor galaxies? L. K. Hunt1, A. Weiß2, C. Henkel2; 3, F. Combes4, S. García-Burillo5, V. Casasola1, P. Caselli6, A. Lundgren9, R. Maiolino7, K. M. Menten2, and L. Testi1; 8 1 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze, Italy e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 3 Astronomy Department, King Abdulaziz University, PO Box 80203, Jeddah, Saudia Arabia 4 Observatoire de Paris, LERMA, Collège de France, CNRS, PSL, Sorbonne University UPMC, 75014 Paris, France 5 Observatorio Astronómico Nacional (OAN)-Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid, Spain 6 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany 7 Cavendish Laboratory, University of Cambridge, 19 J.J. Thomson Avenue, Cambridge CB3 0HE, UK 8 ESO, Karl Schwarzschild str. 2, 85748 Garching bei München, Germany 9 Vittja 64, 74793 Alunda, Sweden Received 18 April 2017 / Accepted 8 August 2017 ABSTRACT Studying the molecular component of the interstellar medium (ISM) in metal-poor galaxies has been challenging because of the faint- ness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metal- licities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z=Z ∼ 0.3), two detections of 13CO isotopologues and atomic carbon, [Ci](1–0) and an upper limit for HCN(1–0) are also reported.
    [Show full text]
  • The Triggering of Starbursts in Low-Mass Galaxies
    Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 28 September 2018 (MN LATEX style file v2.2) The triggering of starbursts in low-mass galaxies Federico Lelli1;2 ?, Marc Verheijen2, Filippo Fraternali3;1 1Department of Astronomy, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA 2Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV, Groningen, The Netherlands 3Department of Physics and Astronomy, University of Bologna, via Berti Pichat 6/2, 40127, Bologna, Italy ABSTRACT Strong bursts of star formation in galaxies may be triggered either by internal or ex- ternal mechanisms. We study the distribution and kinematics of the H I gas in the outer regions of 18 nearby starburst dwarf galaxies, that have accurate star-formation histories from HST observations of resolved stellar populations. We find that star- burst dwarfs show a variety of H I morphologies, ranging from heavily disturbed H I distributions with major asymmetries, long filaments, and/or H I-stellar offsets, to lop- sided H I distributions with minor asymmetries. We quantify the outer H I asymmetry for both our sample and a control sample of typical dwarf irregulars. Starburst dwarfs have more asymmetric outer H I morphologies than typical irregulars, suggesting that some external mechanism triggered the starburst. Moreover, galaxies hosting an old burst (&100 Myr) have more symmetric H I morphologies than galaxies hosting a young one (.100 Myr), indicating that the former ones probably had enough time to regularize their outer H I distribution since the onset of the burst. We also investigate the nearby environment of these starburst dwarfs and find that most of them (∼80%) have at least one potential perturber at a projected distance .200 kpc.
    [Show full text]
  • An Atlas of Calcium Triplet Spectra of Active Galaxies 3
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 1 December 2018 (MN LATEX style file v2.2) An atlas of Calcium triplet spectra of active galaxies A. Garcia-Rissmann1⋆, L. R. Vega1,2†, N. V. Asari1‡, R. Cid Fernandes1§, H. Schmitt3,4¶, R. M. Gonz´alez Delgado5k, T. Storchi-Bergmann6⋆⋆ 1 Depto. de F´ısica - CFM - Universidade Federal de Santa Catarina, C.P. 476, 88040-900, Florian´opolis, SC, Brazil 2 Observatorio Astron´omico de C´ordoba, Laprida 854, 5000, C´ordoba, Argentina 3 Remote Sensing Division, Code 7210, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375 4 Interferometric Inc., 14120 Parke Long Court, 103, Chantilly, VA20151 5 Instituto de Astrof´ısica de Andaluc´ıa (CSIC), P.O. Box 3004, 18080 Granada, Spain 6 Instituto de F´ısica, Universidade Federal do Rio Grande do Sul, C.P. 15001, 91501-970, Porto Alegre, RS, Brazil 1 December 2018 ABSTRACT We present a spectroscopic atlas of active galactic nuclei covering the region around the λλ8498, 8542, 8662 Calcium triplet (CaT). The sample comprises 78 ob- jects, divided into 43 Seyfert 2s, 26 Seyfert 1s, 3 Starburst and 6 normal galaxies. The spectra pertain to the inner ∼ 300 pc in radius, and thus sample the central kine- matics and stellar populations of active galaxies. The data are used to measure stellar velocity dispersions (σ⋆) both with cross-correlation and direct fitting methods. These measurements are found to be in good agreement with each-other and with those in previous studies for objects in common. The CaT equivalent width is also measured.
    [Show full text]
  • Secular Evolution and the Formation of Pseudobulges in Disk Galaxies
    5 Aug 2004 22:35 AR AR222-AA42-15.tex AR222-AA42-15.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.astro.42.053102.134024 Annu. Rev. Astron. Astrophys. 2004. 42:603–83 doi: 10.1146/annurev.astro.42.053102.134024 Copyright c 2004 by Annual Reviews. All rights reserved First published! online as a Review in Advance on June 2, 2004 SECULAR EVOLUTION AND THE FORMATION OF PSEUDOBULGES IN DISK GALAXIES John Kormendy Department of Astronomy, University of Texas, Austin, Texas 78712; email: [email protected] Robert C. Kennicutt, Jr. Department of Astronomy, Steward Observatory, University of Arizona, Tucson, Arizona 85721; email: [email protected] KeyWords galaxy dynamics, galaxy structure, galaxy evolution I Abstract The Universe is in transition. At early times, galactic evolution was dominated by hierarchical clustering and merging, processes that are violent and rapid. In the far future, evolution will mostly be secular—the slow rearrangement of energy and mass that results from interactions involving collective phenomena such as bars, oval disks, spiral structure, and triaxial dark halos. Both processes are important now. This review discusses internal secular evolution, concentrating on one important con- sequence, the buildup of dense central components in disk galaxies that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. We begin with an “existence proof”—a review of how bars rearrange disk gas into outer rings, inner rings, and stuff dumped onto the center. The results of numerical sim- ulations correspond closely to the morphology of barred galaxies.
    [Show full text]
  • Galactic Winds in Dwarf Galaxies?
    28.05.2017 Starburst Dwarf Galaxies SS 2017 1 Starburst Dwarf Galaxies The star-formation history does in general not show a continuous evolution but preferably an episoidal behaviour. SS 2017 2 1 28.05.2017 Definition: Starburst (t ) 0 10. ....100 from stellar population synthesis ( G ) M HI HI mass SFR (t ) G Hubble 0 Examples: at former times: Globular Clusters Dwarf Ellipticals giant Ellipticals at present: giant HII regions > 30 Dor SBDGs NGC 1569, NGC 4449, NGC 5253 He 2-10, NGC 1705, III Zw 102 M82, NGC 253 nuclear SBs NGC 1808, NGC 2903, Mkr 297 ULIRGs SSMerger 2017 4 Dwarf Galaxies and Galactic Winds In NGC 1569 2 Super Star Clusters at the base of the gas stream are the engines of the galactic wind due SS 2017 to their5 cumulative supernova II explosions. 2 28.05.2017 Model: • bipolar outflow; • the S part towards observer is unobscured; • disk inclination known. X-ray in colors according to hardness (blue: hard, red: soft) SS 2017 6 overlaid with HI contours (white) Martin et al. (2002) Abundances in the galactic wind from X-ray spectra SS 2017 Martin7 et al. (2002) ApJ 574 3 28.05.2017 The mass loss can be determined from the effective yield yeff of the HI ISM. The loss of metals should be visible in the hot gas outflow. SS 2017 8Martin et al. (2002) ApJ 574 Galactic winds MacLow & Ferrara (1999) courtesy Simone Recchi • Effective yields of dIrrs < solar! • Outflow of SNII gas reduces e.g. O, y SSeff 2017 9 • but: simple outflow models cannot account for gas mixing + turb.
    [Show full text]
  • Inner Bars Also Buckle. the MUSE TIMER View of the Double-Barred Galaxy NGC 1291
    MNRAS 482, L118–L122 (2019) doi:10.1093/mnrasl/sly196 Advance Access publication 2018 October 18 Inner bars also buckle. The MUSE TIMER view of the double-barred galaxy NGC 1291 J. Mendez-Abreu´ ,1,2‹ A. de Lorenzo-Caceres,´ 1,2 D. A. Gadotti,3 F. Fragkoudi,4 G. van de Ven ,3 J. Falcon-Barroso,´ 1,2 R. Leaman,5 I. Perez,´ 6,7 M. Querejeta,3,8 P. Sanchez-Blazquez´ 9 and M. Seidel10,11 1Instituto de Astrof´ısica de Canarias, Calle V´ıa Lactea´ s/n, E-38205 La Laguna, Tenerife, Spain 2 Departamento de Astrof´ısica, Universidad de La Laguna, E-38200 La Laguna, Tenerife, Spain Downloaded from https://academic.oup.com/mnrasl/article/482/1/L118/5136436 by guest on 24 September 2021 3European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching bei Munchen, Germany 4Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching bei Munchen,¨ Germany 5Max-Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 6Departamento de F´ısica Teorica´ y del Cosmos, Universidad de Granada, Facultad de Ciencias (Edificio Mecenas), E-18071 Granada, Spain 7Instituto Universitario Carlos I de F´ısica Teorica´ y Computacional, Universidad de Granada, E-18071 Granada, Spain 8Observatorio Astronomico´ Nacional (IGN), Calle Alfonso XII 3, E-28014 Madrid, Spain 9Departamento de F´ısica Teorica,´ Universidad Autonoma´ de Madrid, E-28049 Cantoblanco, Spain 10Caltech-IPAC, Spitzer Science Center, 1200 E. California Blvd., Pasadena, CA 91125, USA 11The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101, USA Accepted 2018 September 30.
    [Show full text]
  • Cool Dust in the Outer Ring of Ngc 1291
    The Astrophysical Journal, 756:75 (9pp), 2012 September 1 doi:10.1088/0004-637X/756/1/75 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. COOL DUST IN THE OUTER RING OF NGC 1291 J. L. Hinz1, C. W. Engelbracht1, R. Skibba1, A. Crocker2, J. Donovan Meyer3, K. Sandstrom4, F. Walter4, E. Montiel1,B.D.Johnson5, L. Hunt6,G.Aniano7, L. Armus8, D. Calzetti2,D.A.Dale9,B.Draine7, M. Galametz10, B. Groves4, R. C. Kennicutt10,1,S.E.Meidt4,E.J.Murphy7, and F. S. Tabatabaei4 1 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA; [email protected] 2 Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA 3 Physics & Astronomy Department, Stony Brook University, Stony Brook, NY 11794-3800, USA 4 Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg, Germany 5 9 Institut d’Astrophysique de Paris, CNRS, Universite Pierre & Marie Curie, UMR 7095, 98bis bd Arago, F-75014 Paris, France 6 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Fireze, Italy 7 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 8 Spitzer Science Center, California Institute of Technology, Mc 314-6, Pasadena, CA 91125, USA 9 Department of Physics & Astronomy, University of Wyoming, Laramie, WY 82071, USA 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK Received 2012 April 18; accepted 2012 July 2; published 2012 August 17 ABSTRACT We examine Herschel Space Observatory images of one nearby prototypical outer ring galaxy, NGC 1291, and show that the ring becomes more prominent at wavelengths longer than 160 μm.
    [Show full text]
  • Molecules As Tracers of Galaxy Evolution: an EMIR Survey
    Astronomy & Astrophysics manuscript no. costagliola˙evol c ESO 2018 February 8, 2018 Molecules as tracers of galaxy evolution: an EMIR survey I. Presentation of the data and first results F. Costagliola1,⋆, S. Aalto1,⋆⋆, M. I. Rodriguez2, S. Muller1, H. W. W. Spoon3, S. Mart´ın4, M. A. Per´ez-Torres2, A. Alberdi2, J. E. Lindberg1,5, F. Batejat1, E. J¨utte6, P. van der Werf7,8, and F. Lahuis7,9 1 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala, Sweden, e-mail: [email protected] 2 Instituto de Astrof´ısica de Andaluc´ıa (IAA-CSIC), PO Box 3004, E-18080 Granada, Spain 3 Cornell University, Astronomy Department, Ithaca, NY 14853, USA 4 European Southern Observarory, Alonso de C´ordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile 5 Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 København K, Denmark 6 Astronomisches Institut Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum, Germany 7 Leiden Observatory, Leiden University, NL-2300 RA, Leiden, The Netherlands 8 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, United Kingdom 9 SRON Netherlands Institute for Space Research, P.O. Box 800, NL-9700 AV, Groningen, The Netherlands ABSTRACT Aims. We investigate the molecular gas properties of a sample of 23 galaxies in order to find and test chemical signatures of galaxy evolution and to compare them to IR evolutionary tracers. Methods. Observation at 3 mm wavelengths were obtained with the EMIR broadband receiver, mounted on the IRAM 30 m telescope on Pico Veleta, Spain.
    [Show full text]