An Atlas of Hubble Space Telescope Ultraviolet Images of Nearby Galaxies1

Total Page:16

File Type:pdf, Size:1020Kb

An Atlas of Hubble Space Telescope Ultraviolet Images of Nearby Galaxies1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server An Atlas of Hubble Space Telescope Ultraviolet Images of Nearby Galaxies1 Dan Maoz2, Alexei V. Filippenko3, Luis C. Ho3,4,F.DuccioMacchetto5, Hans-Walter Rix6, and Donald P. Schneider7 1 BasedonobservationswiththeHubble Space Telescope which is operated by AURA, Inc., under NASA contract NAS 5-26555 2 School of Physics & Astronomy and Wise Observatory, Tel-Aviv University, Tel-Aviv 69978, Israel. [email protected] 3 Department of Astronomy, University of California, Berkeley, CA 94720-3411 4 Center for Astrophyics, 60 Garden Street, Cambridge, MA 02138 5 Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 6 Steward Observatory, University of Arizona, Tucson, AZ 85721 7 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 ABSTRACT We present an atlas of UV (∼ 2300 A)˚ images, obtained with the Hubble Space Telescope (HST) Faint Object Camera, of the central 2200 × 2200 of 110 galaxies. The observed galaxies are an unbiased selection constituting about one half of a complete sample of all large (D>60) and nearby (V<2000 km s−1) galaxies. This is the first extensive UV imaging survey of normal galaxies. The data are useful for studying star formation, low-level nuclear activity, and UV emission by evolved stellar populations in galaxies. At the HST resolution (∼ 0.0500), the images display an assortment of morphologies and UV brightnesses. These include bright nuclear point sources, compact young star clusters scattered in the field or arranged in circumnuclear rings, centrally-peaked diffuse light distributions, and galaxies with weak or undetected UV emission. We measure the integrated ∼ 2300 A˚ flux in each image, classify the UV morphology, and examine trends between these parameters and the optical properties of the galaxies. Subject headings: atlases – ultraviolet: galaxies – galaxies: structure – galaxies: active – galaxies: star clusters – galaxies: nuclei 1 1. Introduction are probably bound. In a forthcoming work (Ho et al. 1996b) we will use the UV images to analyze the star- Ultraviolet (UV) imaging is a powerful tool for the formation properties of all the galaxies in the sample. study of galaxies. Recent star formation and low- In this paper, we present images and basic data for the level nuclear activity can be traced and measured in 110 galaxies observed. The images provide a reference UV images, unhindered by the bright background of for the UV brightness and morphology of the galaxies the older stellar populations which dominate in visual in the sample, which can be used as a general guide bands. The source of UV emission in some quiescent to the UV properties of the centers of galaxies, and early-type galaxies can also be studied with UV imag- as an aid in extracting the actual data from the HST ing. Prior to the launch of the Hubble Space Telescope archive. We also provide a classification of the UV (HST), few galaxies were imaged in the UV. These few morphology, additional notes on some of the galaxies were mostly Local Group spiral galaxies observed at and what is seen in their images, and a measurement low angular resolution using rocket-borne telescopes of the ∼ 2300 A˚ flux integrated over the image. We on brief flights (see Bohlin et al. 1990, and refer- tabulate these together with the larger-scale proper- ences therein). This situation has improved in recent ties of the galaxies and (for the northern galaxies) years with the flight of UV imaging telescopes on the the spectroscopic nuclear classification from Ho, Fil- Space Shuttle (e.g., Landsman et al. 1992; Hill et ippenko, & Sargent (1995, 1996a). In §2, below, we al. 1992), although the angular resolution is still low describe the sample selection and the observations. In and the number of galaxies observed is small, due to §3 we present tables listing the galaxy parameters, a the limited mission duration. In this respect, HST, pictorial atlas of the data, and notes on some of the with its high sensitivity and angular resolution, has individual galaxies. In §4 we intercompare the UV opened up a new frontier. Summaries of recent HST and optical properties of the galaxies and provide a UV-imaging studies of galaxies appear in Benvenuti, brief summary. Macchetto, & Schreier (1996). We have carried out a UV imaging survey with 2. Observations the pre-COSTAR HST Faint Object Camera (FOC) of the central regions of 110 large nearby galaxies, se- The sample from which the observed galaxies were lected randomly from a complete sample of 240 galax- chosen consists of all galaxies in the UGC and ESO ies. The main purposes of the survey are (a) to de- catalogs (Lauberts & Valentijn 1989) with heliocen- tect low-luminosity active galactic nuclei (AGNs), ex- tric velocities available in the literature and less than ploiting the high contrast of a nuclear UV continuum 2000 km s−1, and photographic diameters (as defined source above the low UV background from stars, and in the catalogs) greater than 60. A total of 22 galaxies (b) to study star formation in the central regions of were removed from this initial sample of 262 galaxies the galaxies; by observing at ∼ 2300 A,˚ the survey during subsequent stages of the sample definition. In images detect primarily the youngest existing stel- 21 of these, no nuclear position could be defined be- lar populations and thus provide a clean probe of cause they were too diffuse, too low in surface bright- the most recent sites of active star formation, un- ness, or edge-on with strong dust lanes. One galaxy contaminated by light from more evolved stars. The (ESO 1331−4517) had a bright foreground star near power of this technique, especially when augmented the nucleus, which would have endangered the HST by the high HST angular resolution, has been recently instruments. This left a well-defined sample of 240 demonstrated in UV studies of starbursts by Conti & galaxies with observable nuclei. Vacca (1994), Meurer et al. (1995), and Maoz et al. Twenty-seven galaxies from this sample were not (1996). included in our target list because they were proposed Maoz et al. (1995) presented data from the survey targets of other HST UV-imaging programs. How- for nine galaxies displaying bright compact nuclear ever, we have subsequently obtained from the HST UV sources, five of which are potential low-luminosity archive the data for seven of these galaxies which were AGNs. Maoz et al. (1996) analyzed the images of five actually observed with an instrumental configuration additional galaxies having circumnuclear star-forming similar to the one we used (FOC + UV filter at ∼ 2300 rings, and showed that much of the star formation in A).˚ the rings is confined to massive compact clusters that Digitized photographs from the GASP archive at 2 Space Telescope Science Institute (STScI) of all po- have used, the FOC is limited in its dynamic range to tential target galaxies were examined and the coordi- 255 counts (8 bits) per zoomed pixel; additional signal nates of the nucleus determined to ∼ 100 −200 precision causes the counts to “fold over” and start again from by computing the centroid of the light distribution. In 0. Another problem is that the detected count rate a few cases, as evidenced by the eventual HST images, becomes nonlinear, gradually saturating for bright the galaxy nucleus position was off by up to ∼ 500, due sources (see Baxter et al. 1994). The central pix- to isophote distortion by dust features in the GASP els of most of the compact bright sources detected images. in the images may be in the nonlinear regime, and The observations were done in Snapshot mode – the brightest of them are clearly saturated. In sev- i.e., targets were chosen from the target list by the eral galaxies where we report the brightness and/or STScI staff based on the convenience of their location angular size of individual compact sources, our analy- on the sky. The brief exposure was used to fill the sis relies mainly on the wings of the PSF, which have −1 −1 gaps left in the observing schedule after other science low count rates (∼< 0.05 s pixel ), using the algo- programs had been scheduled. The observed galaxies rithms described by Maoz et al. (1995, 1996). We are therefore an unbiased selection from the complete model the PSF using a well-exposed F220W image of sample. astarobservedwiththeFOCf/96 256 × 256 pixel mode, which has a large dynamic and linear range Among the galaxies described in this paper, 103 (but small field of view). Such empirical PSFs are were successfully observed with HST while the pro- required for work in the UV (Baxter et al. 1994). gram was active, in 1993, March through July. We supplement these observations with data for the seven As in Maoz et al. (1995, 1996), we translate the out of the 27 “embargoed” galaxies that were ob- FOC counts to a flux density fλ at 2270 A˚ assuming 1 17 1 2 1 served with HST between 1991 and 1995. We there- 1counts− =1.66 × 10− erg s− cm− A˚− ,based fore have data for a total of 110 galaxies out of on the on-line calibration data available from STScI the complete sample of 240 galaxies. Observations for the FOC and F220W filter, with a 25% increase in were unsuccessful for four galaxies due to wrong co- sensitivity of the 512 × 1024 zoomed-pixel mode rela- ordinates (NGC 660) or telescope malfunction (NGC tive to the 512 × 512 pixel mode (Baxter et al. 1994). 3714, ESO 0514−3709, and NGC 3137); we do not This calibration assumes a spectrum that is constant count these among the successful 110 observations, in fλ.
Recommended publications
  • Arxiv:1904.07129V1 [Astro-Ph.GA] 15 Apr 2019
    Draft version April 16, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 SPIRE SPECTROSCOPY OF EARLY TYPE GALAXIES Ryen Carl Lapham and Lisa M. Young Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801; [email protected], [email protected] Draft version April 16, 2019 ABSTRACT We present SPIRE spectroscopy for 9 early-type galaxies (ETGs) representing the most CO-rich and far-infrared (FIR) bright galaxies of the volume-limited Atlas3D sample. Our data include detections of mid to high J CO transitions (J=4-3 to J=13-12) and the [C I] (1-0) and (2-1) emission lines. CO spectral line energy distributions (SLEDs) for our ETGs indicate low gas excitation, barring NGC 1266. We use the [C I] emission lines to determine the excitation temperature of the neutral gas, as well as estimate the mass of molecular hydrogen. The masses agree well with masses derived from CO, making this technique very promising for high redshift galaxies. We do not find a trend between the [N II] 205 flux and the infrared luminosity, but we do find that the [N II] 205/CO(6-5) line ratio is correlated with the 60/100 µm Infrared Astronomical Satellite (IRAS) colors. Thus the [N II] 205/CO(6-5) ratio can be used to infer a dust temperature, and hence the intensity of the interstellar radiation field (ISRF). Photodissociation region (PDR) models show that use of [C I] and CO lines in addition to the typical [C II], [O I], and FIR fluxes drive the model solutions to higher densities and lower values of G0.
    [Show full text]
  • Linking Dust Emission to Fundamental Properties in Galaxies: the Low-Metallicity Picture?
    A&A 582, A121 (2015) Astronomy DOI: 10.1051/0004-6361/201526067 & c ESO 2015 Astrophysics Linking dust emission to fundamental properties in galaxies: the low-metallicity picture? A. Rémy-Ruyer1;2, S. C. Madden2, F. Galliano2, V. Lebouteiller2, M. Baes3, G. J. Bendo4, A. Boselli5, L. Ciesla6, D. Cormier7, A. Cooray8, L. Cortese9, I. De Looze3;10, V. Doublier-Pritchard11, M. Galametz12, A. P. Jones1, O. Ł. Karczewski13, N. Lu14, and L. Spinoglio15 1 Institut d’Astrophysique Spatiale, CNRS, UMR 8617, 91405 Orsay, France e-mail: [email protected]; [email protected] 2 Laboratoire AIM, CEA/IRFU/Service d’Astrophysique, Université Paris Diderot, Bât. 709, 91191 Gif-sur-Yvette, France 3 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Laboratoire d’Astrophysique de Marseille – LAM, Université d’Aix-Marseille & CNRS, UMR 7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13, France 6 Department of Physics, University of Crete, 71003 Heraklion, Greece 7 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 8 Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 9 Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail H30, PO Box 218, Hawthorn VIC 3122, Australia 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Max-Planck für Extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching-bei-München, Germany 12 European Southern Observatory, Karl-Schwarzschild-Str.
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • Classification of Galaxies Using Fractal Dimensions
    UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • WALLABY Pre-Pilot Survey: Two Dark Clouds in the Vicinity of NGC 1395
    University of Texas Rio Grande Valley ScholarWorks @ UTRGV Physics and Astronomy Faculty Publications and Presentations College of Sciences 2021 WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395 O. I. Wong University of Western Australia A. R. H. Stevens B. Q. For University of Western Australia Tobias Westmeier M. Dixon See next page for additional authors Follow this and additional works at: https://scholarworks.utrgv.edu/pa_fac Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation O I Wong, A R H Stevens, B-Q For, T Westmeier, M Dixon, S-H Oh, G I G Józsa, T N Reynolds, K Lee-Waddell, J Román, L Verdes-Montenegro, H M Courtois, D Pomarède, C Murugeshan, M T Whiting, K Bekki, F Bigiel, A Bosma, B Catinella, H Dénes, A Elagali, B W Holwerda, P Kamphuis, V A Kilborn, D Kleiner, B S Koribalski, F Lelli, J P Madrid, K B W McQuinn, A Popping, J Rhee, S Roychowdhury, T C Scott, C Sengupta, K Spekkens, L Staveley-Smith, B P Wakker, WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395, Monthly Notices of the Royal Astronomical Society, 2021;, stab2262, https://doi.org/10.1093/ mnras/stab2262 This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Physics and Astronomy Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected].
    [Show full text]
  • Synapses of Active Galactic Nuclei: Comparing X-Ray and Optical Classifications Using Artificial Neural Networks?
    A&A 567, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201322592 & c ESO 2014 Astrophysics Synapses of active galactic nuclei: Comparing X-ray and optical classifications using artificial neural networks? O. González-Martín1;2;??, D. Díaz-González3, J. A. Acosta-Pulido1;2, J. Masegosa4, I. E. Papadakis5;6, J. M. Rodríguez-Espinosa1;2, I. Márquez4, and L. Hernández-García4 1 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna (ULL), 38205 La Laguna, Spain 3 Shidix Technologies, 38320, La Laguna, Spain 4 Instituto de Astrofísica de Andalucía, CSIC, C/ Glorieta de la Astronomía s/n, 18005 Granada, Spain 5 Physics Department, University of Crete, PO Box 2208, 710 03 Heraklion, Crete, Greece 6 IESL, Foundation for Research and Technology, 711 10 Heraklion, Crete, Greece Received 2 September 2013 / Accepted 3 April 2014 ABSTRACT Context. Many classes of active galactic nuclei (AGN) have been defined entirely through optical wavelengths, while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. Aims. The main purpose of the present paper is to study the synapses (i.e., connections) between X-ray and optical AGN classifications. Methods. For the first time, the newly implemented efluxer task allowed us to analyse broad band X-ray spectra of a sample of emission-line nuclei without any prior spectral fitting. Our sample comprises 162 spectra observed with XMM-Newton/pn of 90 lo- cal emission line nuclei in the Palomar sample.
    [Show full text]
  • Secular Evolution and the Formation of Pseudobulges in Disk Galaxies
    5 Aug 2004 22:35 AR AR222-AA42-15.tex AR222-AA42-15.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.astro.42.053102.134024 Annu. Rev. Astron. Astrophys. 2004. 42:603–83 doi: 10.1146/annurev.astro.42.053102.134024 Copyright c 2004 by Annual Reviews. All rights reserved First published! online as a Review in Advance on June 2, 2004 SECULAR EVOLUTION AND THE FORMATION OF PSEUDOBULGES IN DISK GALAXIES John Kormendy Department of Astronomy, University of Texas, Austin, Texas 78712; email: [email protected] Robert C. Kennicutt, Jr. Department of Astronomy, Steward Observatory, University of Arizona, Tucson, Arizona 85721; email: [email protected] KeyWords galaxy dynamics, galaxy structure, galaxy evolution I Abstract The Universe is in transition. At early times, galactic evolution was dominated by hierarchical clustering and merging, processes that are violent and rapid. In the far future, evolution will mostly be secular—the slow rearrangement of energy and mass that results from interactions involving collective phenomena such as bars, oval disks, spiral structure, and triaxial dark halos. Both processes are important now. This review discusses internal secular evolution, concentrating on one important con- sequence, the buildup of dense central components in disk galaxies that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. We begin with an “existence proof”—a review of how bars rearrange disk gas into outer rings, inner rings, and stuff dumped onto the center. The results of numerical sim- ulations correspond closely to the morphology of barred galaxies.
    [Show full text]
  • The I Band Tully-Fisher Relation for Cluster Galaxies: Data Presentation
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Peer-reviewed articles by Dartmouth faculty Faculty Work 10-13-1997 The I Band Tully-Fisher Relation for Cluster Galaxies: Data Presentation. Riccardo Giovanelli Cornell University Martha P. Haynes Cornell University Terry Herter Cornell University Nicole P. Vogt Cornell University Gary Wegner Dartmouth College See next page for additional authors Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Astrophysics and Astronomy Commons Dartmouth Digital Commons Citation Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry; Vogt, Nicole P.; Wegner, Gary; Salzer, John J.; da Costa, Luiz N.; and Freudling, Wolfram, "The I Band Tully-Fisher Relation for Cluster Galaxies: Data Presentation." (1997). Open Dartmouth: Peer-reviewed articles by Dartmouth faculty. 3427. https://digitalcommons.dartmouth.edu/facoa/3427 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Peer-reviewed articles by Dartmouth faculty by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Riccardo Giovanelli, Martha P. Haynes, Terry Herter, Nicole P. Vogt, Gary Wegner, John J. Salzer, Luiz N. da Costa, and Wolfram Freudling This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/3427 Version 1.1 13 October 1996 To appear in Astronomical Journal The I–Band Tully–Fisher Relation for Cluster Galaxies: Data Presentation Riccardo Giovanelli, Martha P. Haynes, Terry Herter and Nicole P. Vogt Center for Radiophysics and Space Research and National Astronomy and Ionosphere Center1, Cornell University, Ithaca, NY 14853 Gary Wegner Dept.
    [Show full text]
  • Inner Bars Also Buckle. the MUSE TIMER View of the Double-Barred Galaxy NGC 1291
    MNRAS 482, L118–L122 (2019) doi:10.1093/mnrasl/sly196 Advance Access publication 2018 October 18 Inner bars also buckle. The MUSE TIMER view of the double-barred galaxy NGC 1291 J. Mendez-Abreu´ ,1,2‹ A. de Lorenzo-Caceres,´ 1,2 D. A. Gadotti,3 F. Fragkoudi,4 G. van de Ven ,3 J. Falcon-Barroso,´ 1,2 R. Leaman,5 I. Perez,´ 6,7 M. Querejeta,3,8 P. Sanchez-Blazquez´ 9 and M. Seidel10,11 1Instituto de Astrof´ısica de Canarias, Calle V´ıa Lactea´ s/n, E-38205 La Laguna, Tenerife, Spain 2 Departamento de Astrof´ısica, Universidad de La Laguna, E-38200 La Laguna, Tenerife, Spain Downloaded from https://academic.oup.com/mnrasl/article/482/1/L118/5136436 by guest on 24 September 2021 3European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching bei Munchen, Germany 4Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching bei Munchen,¨ Germany 5Max-Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 6Departamento de F´ısica Teorica´ y del Cosmos, Universidad de Granada, Facultad de Ciencias (Edificio Mecenas), E-18071 Granada, Spain 7Instituto Universitario Carlos I de F´ısica Teorica´ y Computacional, Universidad de Granada, E-18071 Granada, Spain 8Observatorio Astronomico´ Nacional (IGN), Calle Alfonso XII 3, E-28014 Madrid, Spain 9Departamento de F´ısica Teorica,´ Universidad Autonoma´ de Madrid, E-28049 Cantoblanco, Spain 10Caltech-IPAC, Spitzer Science Center, 1200 E. California Blvd., Pasadena, CA 91125, USA 11The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101, USA Accepted 2018 September 30.
    [Show full text]
  • Cool Dust in the Outer Ring of Ngc 1291
    The Astrophysical Journal, 756:75 (9pp), 2012 September 1 doi:10.1088/0004-637X/756/1/75 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. COOL DUST IN THE OUTER RING OF NGC 1291 J. L. Hinz1, C. W. Engelbracht1, R. Skibba1, A. Crocker2, J. Donovan Meyer3, K. Sandstrom4, F. Walter4, E. Montiel1,B.D.Johnson5, L. Hunt6,G.Aniano7, L. Armus8, D. Calzetti2,D.A.Dale9,B.Draine7, M. Galametz10, B. Groves4, R. C. Kennicutt10,1,S.E.Meidt4,E.J.Murphy7, and F. S. Tabatabaei4 1 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA; [email protected] 2 Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA 3 Physics & Astronomy Department, Stony Brook University, Stony Brook, NY 11794-3800, USA 4 Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg, Germany 5 9 Institut d’Astrophysique de Paris, CNRS, Universite Pierre & Marie Curie, UMR 7095, 98bis bd Arago, F-75014 Paris, France 6 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Fireze, Italy 7 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 8 Spitzer Science Center, California Institute of Technology, Mc 314-6, Pasadena, CA 91125, USA 9 Department of Physics & Astronomy, University of Wyoming, Laramie, WY 82071, USA 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK Received 2012 April 18; accepted 2012 July 2; published 2012 August 17 ABSTRACT We examine Herschel Space Observatory images of one nearby prototypical outer ring galaxy, NGC 1291, and show that the ring becomes more prominent at wavelengths longer than 160 μm.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]