Hot Interstellar Matter in Elliptical Galaxies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M . -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
Arxiv:2009.04090V2 [Astro-Ph.GA] 14 Sep 2020
Research in Astronomy and Astrophysics manuscript no. (LATEX: tikhonov˙Dorado.tex; printed on September 15, 2020; 1:01) Distance to the Dorado galaxy group N.A. Tikhonov1, O.A. Galazutdinova1 Special Astrophysical Observatory, Nizhnij Arkhyz, Karachai-Cherkessian Republic, Russia 369167; [email protected] Abstract Based on the archival images of the Hubble Space Telescope, stellar photometry of the brightest galaxies of the Dorado group:NGC 1433, NGC1533,NGC1566and NGC1672 was carried out. Red giants were found on the obtained CM diagrams and distances to the galaxies were measured using the TRGB method. The obtained values: 14.2±1.2, 15.1±0.9, 14.9 ± 1.0 and 15.9 ± 0.9 Mpc, show that all the named galaxies are located approximately at the same distances and form a scattered group with an average distance D = 15.0 Mpc. It was found that blue and red supergiants are visible in the hydrogen arm between the galaxies NGC1533 and IC2038, and form a ring structure in the lenticular galaxy NGC1533, at a distance of 3.6 kpc from the center. The high metallicity of these stars (Z = 0.02) indicates their origin from NGC1533 gas. Key words: groups of galaxies, Dorado group, stellar photometry of galaxies: TRGB- method, distances to galaxies, galaxies NGC1433, NGC 1533, NGC1566, NGC1672 1 INTRODUCTION arXiv:2009.04090v2 [astro-ph.GA] 14 Sep 2020 A concentration of galaxies of different types and luminosities can be observed in the southern constella- tion Dorado. Among them, Shobbrook (1966) identified 11 galaxies, which, in his opinion, constituted one group, which he called “Dorado”. -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
The Formation and Evolution of S0 Galaxies
The Formation and Evolution of S0 Galaxies Alejandro P. Garc´ıa Bedregal Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy January 2007 A mi Abu y Tata, Angelines y Guillermo ii Supervisor: Dr. Alfonso Arag´on-Salamanca Co-supervisor: Prof. Michael R. Merrifield Examiners: Prof. Roger Davies (University of Oxford) Dr. Meghan Gray (University of Nottingham) Submitted: 1 December 2006 Examined: 16 January 2007 Final version: 22 January 2007 Abstract This thesis studies the origin of local S0 galaxies and their possible links to other morphological types, particularly during their evolution. To address these issues, two different – and complementary – approaches have been adopted: a detailed study of the stellar populations of S0s in the Fornax Cluster and a study of the Tully–Fisher Relation of local S0s in different environments. The data utilised for the study of Fornax S0s includes new long-slit spectroscopy for a sample of 9 S0 galaxies obtained using the FORS2 spectrograph at the 8.2m ESO VLT. From these data, several kinematic parameters have been extracted as a function of position along the major axes of these galaxies. These parameters are the mean velocity, velocity dispersion and higher-moment h3 and h4 coefficients. Comparison with published kinematics indicates that earlier data are often limited by their lower signal-to-noise ratio and relatively poor spectral resolution. The greater depth and higher resolution of the new data mean that we reach well beyond the bulges of these systems, probing their disk kinematics in some detail for the first time. Qualitative inspection of the results for individual galaxies shows that some of them are not entirely simple systems, perhaps indicating a turbulent past. -
Download This Article in PDF Format
A&A 374, 454–464 (2001) Astronomy DOI: 10.1051/0004-6361:20010750 & c ESO 2001 Astrophysics ROSAT -HRI observations of six southern galaxy pairs G. Trinchieri and R. Rampazzo Osservatorio Astronomico di Brera, via Brera 28, 20121 Milano, Italy Received 3 April 2001 / Accepted 25 May 2001 Abstract. We present the detailed analysis of the X–ray data for 6 pairs, isolated or in poor groups, observed at high resolution with the ROSAT HRI . In all cases, the stronger X–ray source is associated with the brighter early-type member and is extended. The extent varies from galactic to group scale, from 3 (RR 210b) to 182 kpc( RR 22a). The fainter members are detected only in two pairs, RR 210 and RR 259. Except for one case, no significant substructures have been detected in the X–ray maps, possibly also as a consequence of the poor statistics. The core radii of the X–ray surface brightness profiles are in the range 1–3 kpc. The distribution of the luminosities of galaxies in pairs encompasses a very wide range of both luminosities and LX/LB ratios, in spite of the very small number of objects studied so far. Our data provide no evidence that pair membership affects the X–ray properties of galaxies. Observation are discussed in the context of the pair/group evolution. Key words. galaxies: individual: general – galaxies: interactions – X–rays: galaxies 1. Introduction Since the number of poor groups studied is increas- ing, attempts at classifying them into an evolutionary se- Pairs of galaxies with elliptical members and isolated el- quence combining their X–ray properties to galaxy pop- lipticals in the field could represent different phases in the ulation (presence of satellite galaxies, ratio between early coalescence process of groups (e.g. -
Globular Clusters and Galactic Nuclei
Scuola di Dottorato “Vito Volterra” Dottorato di Ricerca in Astronomia– XXIV ciclo Globular Clusters and Galactic Nuclei Thesis submitted to obtain the degree of Doctor of Philosophy (“Dottore di Ricerca”) in Astronomy by Alessandra Mastrobuono Battisti Program Coordinator Thesis Advisor Prof. Roberto Capuzzo Dolcetta Prof. Roberto Capuzzo Dolcetta Anno Accademico 2010-2011 ii Abstract Dynamical evolution plays a key role in shaping the current properties of star clus- ters and star cluster systems. We present the study of stellar dynamics both from a theoretical and numerical point of view. In particular we investigate this topic on different astrophysical scales, from the study of the orbital evolution and the mutual interaction of GCs in the Galactic central region to the evolution of GCs in the larger scale galactic potential. Globular Clusters (GCs), very old and massive star clusters, are ideal objects to explore many aspects of stellar dynamics and to investigate the dynamical and evolutionary mechanisms of their host galaxy. Almost every surveyed galaxy of sufficiently large mass has an associated group of GCs, i.e. a Globular Cluster System (GCS). The first part of this Thesis is devoted to the study of the evolution of GCSs in elliptical galaxies. Basing on the hypothesis that the GCS and stellar halo in a galaxy were born at the same time and, so, with the same density distribution, a logical consequence is that the presently observed difference may be due to evolution of the GCS. Actually, in this scenario, GCSs evolve due to various mechanisms, among which dynamical friction and tidal interaction with the galactic field are the most important. -
April 14 2018 7:00Pm at the April 2018 Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Tim Frazier Saturday, April 14th 2018 April 2018 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. It really is beginning to feel like spring. The weather is more moderate and there will be, hopefully, clearer skies. (I write this with some trepidation as I don’t want to jinx Public Star Party Follows at the it in a manner similar to buying new equipment will ensure at least two weeks of Centennial Observatory cloudy weather.) Along with the season comes some great spring viewing. Leo is high overhead in the early evening with its compliment of galaxies as is Coma Club Officers Berenices and Virgo with that dense cluster of extragalactic objects. Tim Frazier, President One of my first forays into the Coma-Virgo cluster was in the early 1960’s with my [email protected] new 4 ¼ inch f/10 reflector and my first star chart, the epoch 1960 version of Norton’s Star Atlas. I figured from the maps I couldn’t miss seeing something since Robert Mayer, Vice President there were so many so closely packed. That became the real problem as they all [email protected] appeared as fuzzy spots and the maps were not detailed enough to distinguish one galaxy from another. I still have that atlas as it was a precious Christmas gift from Gary Leavitt, Secretary my grandparents but now I use better maps, larger scopes and GOTO to make sure [email protected] it is M84 or M86. -
A Wide-Field H I Study of the NGC 1566 Group*
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 8 September 2004 (MN LATEX style file v1.4) ? A Wide-Field H i Study of the NGC 1566 Group Virginia A. Kilborn1,2, B¨arbel S. Koribalski2, Duncan A. Forbes1, David G. Barnes3, Ruth C. Musgrave1 1Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail 31, PO Box 218, Hawthorn, VIC 3122, Australia 2Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710, Australia 3School of Physics, University of Melbourne, Parkville, VIC 3010, Australia Received date; accepted date ABSTRACT We report on neutral hydrogen observations of a ∼ 5.5◦ × 5.5◦ field around the NGC 1566 galaxy group with the multibeam narrow-band system on the 64-m Parkes telescope. We detected thirteen H i sources in the field, including two galaxies not previously known to be members of the group, bringing the total number of con- firmed galaxies in this group to 26. Each of the H i galaxies can be associated with an optically catalogued galaxy. No ’intergalactic H i clouds’ were found to an H i mass 8 limit of ∼ 3.5 × 10 M . We have estimated the expected H i content of the late-type galaxies in this group and find the total detected H i is consistent with our expecta- tions. However, while no global H i deficiency is inferred for this group, two galaxies exhibit individual H i deficiencies. Further observations are needed to determine the gas removal mechanisms in these galaxies. Key words: surveys, radio lines: galaxies, galaxies: individual (NGC 1566, NGC 1533, NGC 1549, NGC 1553), galaxies: clusters: general. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
COS Observations of the Cosmic Web: a Search for the Cooler Components of a Hot, X-Ray Identified Filament
Draft version November 15, 2019 Typeset using LATEX twocolumn style in AASTeX63 COS Observations of the Cosmic Web: A Search for the Cooler Components of a Hot, X-ray Identified Filament Thomas Connor ,1 Fakhri S. Zahedy ,2, 3 Hsiao-Wen Chen ,2, 4 Thomas J. Cooper ,3 John S. Mulchaey ,3 and Alexey Vikhlinin 5 1The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA 2Department of Astronomy & Astrophysics, The University of Chicago, Chicago, IL 60637, USA 3The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA 4Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637, USA 5Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA (Received 2019 July 17; Revised 2019 September 14; Accepted 2019 September 18; Published 2019 October 10) Submitted to ApJL ABSTRACT In the local universe, a large fraction of the baryon content is believed to exist as diffuse gas in filaments. While this gas is directly observable in X-ray emission around clusters of galaxies, it is primarily studied through its UV absorption. Recently, X-ray observations of large-scale filaments connecting to the cosmic web around the nearby (z = 0:05584) cluster Abell 133 were reported. One of these filaments is intersected by the sightline to quasar [VV98] J010250.2 220929, allowing for a − first-ever census of cold, cool, and warm gas in a filament of the cosmic web where hot gas has been seen in X-ray emission. Here, we present UV observations with the Cosmic Origins Spectrograph and optical observations with the Magellan Echellette spectrograph of [VV98] J010250.2 220929. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.