ELEMENTAL ABUNDANCES in the SILICATE PHASE of PALLASITIC METEORITES Redacted for Privacy Abstract Approved: Roman A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbook of Iron Meteorites, Volume 3
Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given. -
Meteorites on Mars Observed with the Mars Exploration Rovers C
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E06S22, doi:10.1029/2007JE002990, 2008 Meteorites on Mars observed with the Mars Exploration Rovers C. Schro¨der,1 D. S. Rodionov,2,3 T. J. McCoy,4 B. L. Jolliff,5 R. Gellert,6 L. R. Nittler,7 W. H. Farrand,8 J. R. Johnson,9 S. W. Ruff,10 J. W. Ashley,10 D. W. Mittlefehldt,1 K. E. Herkenhoff,9 I. Fleischer,2 A. F. C. Haldemann,11 G. Klingelho¨fer,2 D. W. Ming,1 R. V. Morris,1 P. A. de Souza Jr.,12 S. W. Squyres,13 C. Weitz,14 A. S. Yen,15 J. Zipfel,16 and T. Economou17 Received 14 August 2007; revised 9 November 2007; accepted 21 December 2007; published 18 April 2008. [1] Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity’s traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as ‘‘Meridiani Planum.’’ Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. -
Tubular Symplectic Inclusions in Olivine from the Fukang Pallasite
Meteoritics & Planetary Science 45, Nr 5, 899–910 (2010) doi: 10.1111/j.1945-5100.2010.01054.x Tubular symplectic inclusions in olivine from the Fukang pallasite Michael R. STEVENS1, David R. BELL1,2, and Peter R. BUSECK1,2* 1School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA 2Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA *Corresponding author. E-mail: [email protected] (Received 11 June 2009; revision accepted 27 March 2010) Abstract–Olivine from the Fukang meteorite, like that from many other pallasites, contains distinctive arrays of parallel, straight, tubular inclusions. They differ in their extension and linearity from those in terrestrial olivines. They comprise approximately 1% of the total volume. Most have lens-shaped cross-sections, but some are rounded. The major axis of the lens-shaped inclusions is rigorously oriented along olivine [001], and the rounded ones lie along olivine [010] and a few along [100]. The linear nature and orientations of the inclusions suggest that they nucleated on screw dislocations, perhaps formed through shock triggering. High-resolution transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy show that the inclusions consist of symplectic intergrowths of chromite, diopside, and silica that appear to have formed by exsolution from the host olivine. The symplectites consist of chromite lamellae with approximately 35-nm spacings that grew outward from a central plane, with interstitial diopside and silica. Contrast modulations having an average spacing of 4.4 nm occur within the chromite lamellae. Using a reaction- front model, we estimate that exsolution occurred over a period of 30 to 100 min, suggesting rapid cooling at high temperature. -
Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism -
Nanomagnetic Properties of the Meteorite Cloudy Zone
Nanomagnetic properties of the meteorite cloudy zone Joshua F. Einslea,b,1, Alexander S. Eggemanc, Ben H. Martineaub, Zineb Saghid, Sean M. Collinsb, Roberts Blukisa, Paul A. J. Bagote, Paul A. Midgleyb, and Richard J. Harrisona aDepartment of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom; bDepartment of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom; cSchool of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom; dCommissariat a` l’Energie Atomique et aux Energies Alternatives, Laboratoire d’electronique´ des Technologies de l’Information, MINATEC Campus, Grenoble, F-38054, France; and eDepartment of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom Edited by Lisa Tauxe, University of California, San Diego, La Jolla, CA, and approved October 3, 2018 (received for review June 1, 2018) Meteorites contain a record of their thermal and magnetic history, field, it has been proposed that the cloudy zone preserves a written in the intergrowths of iron-rich and nickel-rich phases record of the field’s intensity and polarity (5, 6). The ability that formed during slow cooling. Of intense interest from a mag- to extract this paleomagnetic information only recently became netic perspective is the “cloudy zone,” a nanoscale intergrowth possible with the advent of high-resolution X-ray magnetic imag- containing tetrataenite—a naturally occurring hard ferromagnetic ing methods, which are capable of quantifying the magnetic state mineral that -
Australian Aborigines and Meteorites
Records of the Western Australian Museum 18: 93-101 (1996). Australian Aborigines and meteorites A.W.R. Bevan! and P. Bindon2 1Department of Earth and Planetary Sciences, 2 Department of Anthropology, Western Australian Museum, Francis Street, Perth, Western Australia 6000 Abstract - Numerous mythological references to meteoritic events by Aboriginal people in Australia contrast with the scant physical evidence of their interaction with meteoritic materials. Possible reasons for this are the unsuitability of some meteorites for tool making and the apparent inability of early Aborigines to work metallic materials. However, there is a strong possibility that Aborigines witnessed one or more of the several recent « 5000 yrs BP) meteorite impact events in Australia. Evidence for Aboriginal use of meteorites and the recognition of meteoritic events is critically evaluated. INTRODUCTION Australia, although for climatic and physiographic The ceremonial and practical significance of reasons they are rarely found in tropical Australia. Australian tektites (australites) in Aboriginal life is The history of the recovery of meteorites in extensively documented (Baker 1957 and Australia has been reviewed by Bevan (1992). references therein; Edwards 1966). However, Within the continent there are two significant areas despite abundant evidence throughout the world for the recovery of meteorites: the Nullarbor that many other ancient civilizations recognised, Region, and the area around the Menindee Lakes utilized and even revered meteorites (particularly of western New South Wales. These accumulations meteoritic iron) (e.g., see Buchwald 1975 and have resulted from prolonged aridity that has references therein), there is very little physical or allowed the preservation of meteorites for documentary evidence of Aboriginal acknowledge thousands of years after their fall, and the large ment or use of meteoritic materials. -
(M = Ca, Mg, Fe2+), a Structural Base of Ca3mg3(PO4)4 Phosphors
crystals Article Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors Sergey N. Britvin 1,2,* , Maria G. Krzhizhanovskaya 1, Vladimir N. Bocharov 3 and Edita V. Obolonskaya 4 1 Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia; [email protected] 2 Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia 3 Centre for Geo-Environmental Research and Modelling, Saint-Petersburg State University, Ulyanovskaya ul. 1, 198504 St. Petersburg, Russia; [email protected] 4 The Mining Museum, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia; [email protected] * Correspondence: [email protected] Received: 1 May 2020; Accepted: 25 May 2020; Published: 1 June 2020 Abstract: Stanfieldite, natural Ca-Mg-phosphate, is a typical constituent of phosphate-phosphide assemblages in pallasite and mesosiderite meteorites. The synthetic analogue of stanfieldite is used as a crystal matrix of luminophores and frequently encountered in phosphate bioceramics. However, the crystal structure of natural stanfieldite has never been reported in detail, and the data available so far relate to its synthetic counterpart. We herein provide the results of a study of stanfieldite from the Brahin meteorite (main group pallasite). The empirical formula of the mineral is Ca8.04Mg9.25Fe0.72Mn0.07P11.97O48. Its crystal structure has been solved and refined to R1 = 0.034. Stanfieldite from Brahin is monoclinic, C2/c, a 22.7973(4), b 9.9833(2), c 17.0522(3) Å, β 99.954(2)◦, 3 V 3822.5(1)Å . -
Problems of Planetology, Cosmochemistry and Meteoritica Alexeev V.A., Ustinova G.K
Problems of Planetology… Problems of Planetology, Cosmochemistry and Meteoritica Alexeev V.A., Ustinova G.K. Meteoritic evidence radionuclides before the meteorite fall onto the Earth. The investigation of radionuclides with different T1/2 in the on peculiarities of the contemporary solar cycles chondrites with various dates of fall, which have various V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry extension and inclination of orbits, provides us with such RAS, Moscow long sequences of homogeneous data on variation of the Abstract. The meteorite data on monitoring of the intensity and GCR intensity and integral gradients (E >100 MeV) in the gradient of the galactic cosmic rays (GCR) in the heliosphere 3D heliosphere [Lavrukhina,Ustinova,1990]. The long during 5 solar cycles are used for the correlative analysis with the sequences of homogeneous data on the GCR intensity in variations of the solar activity (SA), strength of the interplanetary magnetic field (IMF) and tilt angle of the heliospheric current the stratosphere [Stozhkov et al., 2009] are used for sheet (HCS). The dependence of the GCR modulation depth in the evaluation of the gradients. Nowadays, such a sequence of 11-year solar cycles on the character of the solar magnetic field certain homogeneous data on the GCR intensity and (SMF) inversions in the heliosphere at the change of the 22-year gradients in the inner heliosphere covers ~5 solar cycles magnetic cycles is revealed. (see figure 1) [Alexeev, Ustinova, 2006]. This smoothes, Key words: galactic cosmic rays, solar modulation, solar cycles, to a considerable extent, both the temporal and spatial inversion of magnetic field, solar dynamo, climate. -
Lost Lake by Robert Verish
Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner. -
Orbital Debris: a Chronology
NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................ -
Tree-Ring Dating of Meteorite Fall in Sikhote-Alin, Eastern Siberia – Russia
International Journal of Astrobiology, Page 1 of 6 1 doi:10.1017/S1473550411000309 © Cambridge University Press 2011 Tree-ring dating of meteorite fall in Sikhote-Alin, Eastern Siberia – Russia R. Fantucci1, Mario Di Martino2 and Romano Serra3 1Geologi Associati Fantucci e Stocchi, 01027 Montefiascone (VT), Italy e-mail: [email protected] 2INAF-Osservatorio Astronomico di Torino, 10025 Pino Torinese, Italy 3Dipartimento di Fisica, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy Abstract: This research deals with the fall of the Sikhote-Alin iron meteorite on the morning of 12 February 1947, at about 00:38 h Utrecht, in a remote area in the territory of Primorsky Krai in Eastern Siberia (46°09′ 36″N, 134°39′22″E). The area engulfed by the meteoritic fall was around 48 km2, with an elliptic form and thousands of craters. Around the large craters the trees were torn out by the roots and laid radially to the craters at a distance of 10–20 m; the more distant trees had broken tops. This research investigated through dendrocronology n.6 Scots pine trees (Pinus Sibirica) close to one of the main impact craters. The analysis of growth anomalies has shown a sudden decrease since 1947 for 4–8 years after the meteoritic impact. Tree growth stress, detected in 1947, was analysed in detail through wood microsection that confirmed the winter season (rest vegetative period) of the event. The growth stress is mainly due to the lost crown (needle lost) and it did not seem to be caused due to direct damages on trunk and branches (missing of resin ducts). -
Pallasites: Olivine-Metal Textures, Phosphoran Olivine, and Origin
Pallasites: olivine-metal textures, phosphoranolivine, and origin Ed Scott University of Hawai’i, Honolulu, HI 96822. [email protected] Four questions: 3. Origin of the four FeO-rich MG pallasites 1. Why do some pallasites have rounded olivines? 2. Why is phosphoran olivine only found in five main-group pallasites? 3. Why do four main group pallasites with rounded olivines contain abnormally Fe-rich olivine? 4. Where did main group and Eagle Station group pallasites form? a 1. Origin of rounded olivine Did cm-sized rounded olivines form before angular olivines [9], or were olivines rounded after Fig. 5. Zaisho, Springwater, Rawlinna, and Phillips Co. fragmentation of olivine [2.3,7]? Constraints: contain anomalously Fe-rich olivine, Ni-rich metal, and • Uniform size distribution of rounded olivines in farringtonite Mg3(PO4)2 [20] suggesting Fe was oxidized. Fig.1c is unlike that of angular olivine pallasites Fig. 3. Ir vs. Ni showing metal in main group pallasites and IIIAB irons. Arrows show Data from [2]. which may contain dunite fragments several cm solid and liquid Fe-Ni paths during fractional crystallization. MG pallasites were b in width (Fig. 1a.). mostly formed by mixing of residual metallic liquid from a IIIAB-like core after 75- Springwater contains 4 • Angular olivine pallasites may contain pieces of 80% crystallization [1,2]. Pavlodar (Pa) has rounded olivines and plots near the vol.% farringtonite (center) rounded olivine texture (Fig. 1b). initial melt composition showing that rounding preceded metal crystallization. enclosing olivine. Slice ~12 • Pavlodar metal matches that expected for initial Marjalahti (Ma), Huckitta (Hu) and Seymchan (Se) have angular olivines and cm wide.