Cosmetic Ingredient Hotlist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Standard X-Ray Diffraction Powder Patterns
NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. -
Chemistry: the Molecular Nature of Matter and Change
REVISED CONFIRMING PAGES The Components of Matter 2.1 Elements, Compounds, and 2.5 The Atomic Theory Today 2.8 Formula, Name, and Mass of Mixtures: An Atomic Overview Structure of the Atom a Compound 2.2 The Observations That Led to Atomic Number, Mass Number, and Binary Ionic Compounds an Atomic View of Matter Atomic Symbol Compounds That Contain Polyatomic Mass Conservation Isotopes Ions Definite Composition Atomic Masses of the Elements Acid Names from Anion Names Multiple Proportions 2.6 Elements: A First Look at the Binary Covalent Compounds The Simplest Organic Compounds: Dalton’s Atomic Theory Periodic Table 2.3 Straight-Chain Alkanes Postulates of the Atomic Theory Organization of the Periodic Table Masses from a Chemical Formula How the Atomic Theory Explains Classifying the Elements Representing Molecules with a the Mass Laws Compounds: An Introduction 2.7 Formula and a Model to Bonding 2.4 The Observations That Led to Mixtures: Classification and the Nuclear Atom Model The Formation of Ionic Compounds 2.9 Separation Discovery of the Electron and The Formation of Covalent An Overview of the Components of Its Properties Compounds Matter Discovery of the Atomic Nucleus (a) (b) (right) ©Rudy Umans/Shutterstock IN THIS CHAPTER . We examine the properties and composition of matter on the macroscopic and atomic scales. By the end of this chapter, you should be able to • Relate the three types of matter—elements or elementary substances, compounds, and mixtures—to the simple chemical entities that they comprise—atoms, ions, and molecules; -
Reverse Auction: a Potential Strategy for Reduction of Pharmacological Therapy Cost
Original Article Reverse Auction: A Potential Strategy for Reduction of Pharmacological Therapy Cost Sara Michelly Gonçalves Brandão, Victor Sarli Issa, Silvia Moreira Ayub-Ferreira, Samantha Storer, Bianca Gigliotti Gonçalves, Valter Garcia Santos, Nelson Carvas Junior, Guilherme Veiga Guimarães, Edimar Alcides Bocchi Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, SP - Brazil Abstract Background: Polypharmacy is a significant economic burden. Objective: We tested whether using reverse auction (RA) as compared with commercial pharmacy (CP) to purchase medicine results in lower pharmaceutical costs for heart failure (HF) and heart transplantation (HT) outpatients. Methods: We compared the costs via RA versus CP in 808 HF and 147 HT patients followed from 2009 through 2011, and evaluated the influence of clinical and demographic variables on cost. Results: The monthly cost per patient for HF drugs acquired via RA was $10.15 (IQ 3.51-40.22) versus $161.76 (IQ 86.05-340.15) via CP; for HT, those costs were $393.08 (IQ 124.74-774.76) and $1,207.70 (IQ 604.48-2,499.97), respectively. Conclusions: RA may reduce the cost of prescription drugs for HF and HT, potentially making HF treatment more accessible. Clinical characteristics can influence the cost and benefits of RA. RA may be a new health policy strategy to reduce costs of prescribed medications for HF and HT patients, reducing the economic burden of treatment.(Arq Bras Cardiol. 2015; 105(3):265-275) Keywords: Heart Failure; Pharmaceutical Preparations / economics; Competitive Bidding / economics; Budgets; Cost Savings; Heart Transplantation. Introduction Health resources are scarce, but the needs are unlimited. -
Rbfhss.2021.121.0562
Abreu GA, Chaves EF, Neto JA, et al. Off-label use of drugs administered by enteral feeding tubes in an intensive care unit in Fortaleza, Brazil. Rev Bras Farm Hosp Serv Saude. 2021;12(1):0562. DOI: 10.30968/rbfhss.2021.121.0562. RBFHSSRevista Brasileira de Farmácia Hospitalar e Serviços de Saúde Original Paper Open Access Off-label use of drugs administered by enteral feeding tubes in an Intensive Care Unit in Fortaleza, Brazil Gabriela Araujo de ABREU1, Elana Figueiredo CHAVES1, José Alcântara NETO2, Lívia Porto MOREIRA1, Johann Vargas SILVA3, Andreína Fontenele TEIXEIRA, Marjorie Moreira GUEDES2, Milena Portela BESERRA2 1Programa de Residência Integrada Multiprofissional em Atenção Hospitalar à Saúde, Hospital Universitário Walter Cantídio, Universidade Federal do Ceará, Fortaleza, Brasil; 2Hospital Universitário Walter Cantídio, Fortaleza, Brasil; 3Programa de Residência Médica em Terapia Intensiva, Hospital Universitário Walter Cantídio, Universidade Federal do Ceará, Fortaleza, Brasil Corresponding author: Abreu GA, [email protected] Submitted: 13-01-2021 Resubmitted: 07-03-2021 Accepted: 07-03-2021 Peer review: blind reviewer and Juliana Miranda Ferreira Abstract Objective: To analyze the prescription profile of drugs administered through enteral feeding tubes in an adult intensive care unit and gather recommendations for their safe administration. Methods: This is a descriptive and cross-sectional study conducted with adult critical clinical patients of a university hospital in Fortaleza-Ceará from March to May 2018. We performed analyses of patients’ medical records and prescriptions regarding drugs, pharmaceutical presentations and the possibility of administration through enteral tubes. Results: 489 prescriptions containing 1914 items were evaluated, from which 16.6% (n = 318) through tubes. -
Cosmetic Ingredient Hotlist - Canada.Ca
9/25/2018 Cosmetic Ingredient Hotlist - Canada.ca Home Health Product safety Consumer Product Safety Cosmetics Cosmetic Ingredient Hotlist: Prohibited and Restricted Ingredients Cosmetic Ingredient Hotlist For assistance on the Ingredient Hotlist, please refer to "How to read the Cosmetic Ingredient Hotlist" 2018 List of Ingredients that are Prohibited for Use in Cosmetic Products List of Ingredients that are Restricted for Use in Cosmetic Products List of Ingredients that are Prohibited for Use in Cosmetic Products # A B C D E F G H I J L M N O P R S T U V W X Y Z CAS (Chemical Abstracts Service) (including but not limited to) Synonyms and Related Compounds Ingredient 1 (including but not limited to) 2 1,2-Epoxybutane 106-88-7 1,3-Butadiene 106-99-0 1,3-Dimethylpentylamine and its salts 105-41-9 11-α-Hydroxypregn-4-ene-3,20-dione and its esters 80-75-1 1- and 2-Naphthylamines and their salts 134-32-7; 91-59-8 1-Butyl-3-(N-crotonoylsulfanilyl) urea 52964-42-8 2-Butenamide, N-[4- [[[(butylamino)carbonyl]amino]sulfonyl]phenyl]-; Crotonoylcarbutamide; Crotulin 1-Methoxy-2,4-diaminobenzene and its salts 615-05-4 2,4-diaminoanisole; Cl 76050 1-Methoxy-2,5-diaminobenzene and their salts 5307-02-8 2,5-diaminoanisole 2-(4-Allyl-2-methoxyphenoxy)-N,N-diethylacetamide and its salts 305-13-5 Estil 2-(4-Methoxybenzyl-N-(2-pyridyl)amino) ethyldimethylamine maleate 59-33-6 2,3,7,8-Tetrachlorodibenzo-p-dioxin 1746-01-6 2,3-Dichloro-2-methylbutane 507-45-9 Amylene dichloride 2,4-Diaminophenylethanol and its salts 14572-93-1 1 Cells in this column are left blank when the substance does not have a known CAS. -
Ed 091 175 Title Institution Pub Date Available From
DOCUMENT RESUME ED 091 175 SE 017 514 TITLE Science: Grade 7. Curriculum Bulletin, 1971-72 Series, No.2. INSTITUTION New York City Board of Education, Brooklyn, N.Y. Bureau of Curriculum Development. PUB DATE 71 NOTE 330p. AVAILABLE FROM New York Board of Education, Publications Sales Office, 110 Livingston Street, Brooklyn, New York 11201 ($5.00) EDRS PRICE MF-$0.75 HC Not Available from EDRS. PLUS POSTAGE DESCRIPTORS Biology; *Curriculum Guides; Earth Science; General Science; Grade 7; Physical Sciences; *Science Activities; Science Education; *Secondary School Science; *Teaching Guides IDENTIFIERS New York City ABSTRACT This book is a curriculum guide for seventh-grade general science. It contains four units of chemistry, physics, biology, and earth science. Each unit is divided into sections covering major concepts. Each section contains science activitiesand contains explanations of objectives and implementation of the lesson. At the end of each section are review exercises, research topics, and resource materials. Also following each unit is a suggested unit examination. (MR) 4f Ba. o fE&. AIIn U S DEPARTYENT OF HEALTH EDUCATION I VSElf ARE NATIONAL INSTITUTE Of EDUCATION S DOCS'E".. RE EN ,EPq: D,cEO Exac , AE'Ef", 'HE.ERSONCQC',"0..}A.:%C., A' ,E PO %c E A 4 1, *A -D DO 4.2' A .NA' Cba " Fr JCA E. E A 4 r BUREAU OF CURRICULUM DEVELOPMENT BOAPP OF EIrUCATION CITY OF NEW YORK Permission to re-rc.'tIce this cc "''k has been granted to ther.eluo.1..nAt Recources Ir..--.'onCenter (ERIC) owl to the organization operating undercentract with the U,S. -
(12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin Et Al
USOO9636405B2 (12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin et al. (45) Date of Patent: May 2, 2017 (54) FOAMABLE VEHICLE AND (56) References Cited PHARMACEUTICAL COMPOSITIONS U.S. PATENT DOCUMENTS THEREOF M (71) Applicant: Foamix Pharmaceuticals Ltd., 1,159,250 A 1 1/1915 Moulton Rehovot (IL) 1,666,684 A 4, 1928 Carstens 1924,972 A 8, 1933 Beckert (72) Inventors: Dov Tamarkin, Maccabim (IL); Doron 2,085,733. A T. 1937 Bird Friedman, Karmei Yosef (IL); Meir 33 A 1683 Sk Eini, Ness Ziona (IL); Alex Besonov, 2,586.287- 4 A 2/1952 AppersonO Rehovot (IL) 2,617,754. A 1 1/1952 Neely 2,767,712 A 10, 1956 Waterman (73) Assignee: EMY PHARMACEUTICALs 2.968,628 A 1/1961 Reed ... Rehovot (IL) 3,004,894. A 10/1961 Johnson et al. (*) Notice: Subject to any disclaimer, the term of this 3,062,715. A 1 1/1962 Reese et al. tent is extended or adiusted under 35 3,067,784. A 12/1962 Gorman pa 3,092.255. A 6/1963 Hohman U.S.C. 154(b) by 37 days. 3,092,555 A 6/1963 Horn 3,141,821 A 7, 1964 Compeau (21) Appl. No.: 13/793,893 3,142,420 A 7/1964 Gawthrop (22) Filed: Mar. 11, 2013 3,144,386 A 8/1964 Brightenback O O 3,149,543 A 9/1964 Naab (65) Prior Publication Data 3,154,075 A 10, 1964 Weckesser US 2013/0189193 A1 Jul 25, 2013 3,178,352. -
1. Preparation of Sulfide Powder (1) Mgs Powder Powder Of
Transactions of the Japan Institute of Metals, Vol. 25, No. 10 (1984), pp. 692 to 697 Ionic and Positive Hole Conductivities of Solid Magnesium and Strontium Sulfides* By Hiroaki Nakamura**, Youichi Ogawa**, Koki Gunji† and Akira Kasahara** The electrical conductivity of MgS and SrS disks carefully prepared to avoid any contamination has been measured at temperatures from 973 to 1223 K and in the Ps2 range from 10-10 to 104 Pa. Because the conductivity was independent of sulfur pressure in the low sulfer pressure range, it was concluded that MgS and SrS may be ionic conductors. The specific conductivity can be expressed as follows; and the apparent activation energy for the conduction of MgS and SrS is 218 kJ/mol and 180 kJ/mol, respectively. However, in the high sulfur pressure range, the specific conductivity of both sulfides increases with an increase in sulfur pressure, suggesting the positive hole conduction. (ReceivedApril 23, 1984) Keywords: magnesium sulfide, strontium sulfide, electrical conductivity, sulfur pressure, ionic conduction, hole conduction, activation energy, alternating current bridge, polarization and strontium were very carefully prepared . Introduction and served for the measurement of electrical conductivity in a wide range of sulfur partial Sulfides have been paid attention to as solid pressure. Potentiostatic polarization was also electrolyte. The physico-chemical properties of carried out to determine the mechanism of con- most of them have not well been studied, com- duction. pared with oxides and halides in actual use as electrolytes. Ⅱ. Experimental Method In this study the electrical conductivity of 1. Preparation of sulfide powder the sulfides of magnesium (MgS) and stron- tium (SrS), which are the same alkaline earths (1) MgS powder as calcium(1), was measured in order to seek for Powder of MgS was prepared by reacting the potential use of them as solid electrolytes. -
Antiproliferative Effect of Angelica Archangelica Fruits Steinthor Sigurdssona,*, Helga M
Antiproliferative Effect of Angelica archangelica Fruits Steinthor Sigurdssona,*, Helga M. Ögmundsdottirb, and Sigmundur Gudbjarnasona a Science Institute, University of Iceland, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland. Fax: +354 525 4886. E-mail: [email protected] b Molecular and Cell Biology Research Laboratory, Icelandic Cancer Society, Skogarhlid 8, IS-101 Reykjavik, Iceland * Author for correspondence and reprint requests Z. Naturforsch. 59c, 523Ð527 (2004); received December 21, 2003/February 9, 2004 The aim of this work was to study the antiproliferative effect of a tincture from fruits of Angelica archangelica and the active components using the human pancreas cancer cell line PANC-1 as a model. Significant dose-dependent antiproliferative activity was observed in µ the tincture with an EC50 value of 28.6 g/ml. Strong antiproliferative activity resulted from the two most abundant furanocoumarins in the tincture, imperatorin and xanthotoxin. The contribution of terpenes to this activity was insignificant. Imperatorin and xanthotoxin µ µ proved to be highly antiproliferative, with EC50 values of 2.7 g/ml and 3.7 g/ml, respec- tively, equivalent to 10 and 17 µm. The results indicate that furanocoumarins account for most of the antiproliferative activity of the tincture. Key words: Angelica archangelica, Xanthotoxin, Imperatorin Introduction their inhibiting effect on cytochrome P450, result- Angelica archangelica has been long and widely ing in drug-interactions (Guo et al., 2000; Koenigs used in folk medicine, and it is one of the most and Trager, 1998; Zhang et al., 2001). Imperatorin respected medicinal herbs in Nordic countries, has also been found to decrease chemically in- where it was cultivated during the Middle Ages, duced DNA adduct formation and may thus pos- and exported to other parts of Europe. -
Standard X-Ray Diffraction Powder Patterns
NBS MONOGRAPH 25—SECTION 4 Standard X-ray Diffraction Powder Patterns U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and mainte- nance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifi- cations advisory service to government agencies on scientific and technical problems ; invention ; and development of devices to serve special needs of the Government; assistance to industry, business, and consumers m the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its three Institutes and their organizatonal units. Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Phys- ics. Radio Standards Laboratory:* Radio Standards Physics; Radio Standards Engineering. Office of Standard Reference Data. Institute for Materials Research. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Drug Metabolism, Pharmacokinetics and Bioanalysis
Drug Metabolism, Pharmacokinetics and Bioanalysis Edited by Hye Suk Lee and Kwang-Hyeon Liu Printed Edition of the Special Issue Published in Pharmaceutics www.mdpi.com/journal/pharmaceutics Drug Metabolism, Pharmacokinetics and Bioanalysis Drug Metabolism, Pharmacokinetics and Bioanalysis Special Issue Editors Hye Suk Lee Kwang-Hyeon Liu MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Hye Suk Lee Kwang-Hyeon Liu The Catholic University of Korea Kyungpook National University Korea Korea Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Pharmaceutics (ISSN 1999-4923) in 2018 (available at: https://www.mdpi.com/journal/ pharmaceutics/special issues/dmpk and bioanalysis) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-916-6 (Pbk) ISBN 978-3-03897-917-3 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Preface to ”Drug Metabolism, Pharmacokinetics and Bioanalysis” ................. ix Fakhrossadat Emami, Alireza Vatanara, Eun Ji Park and Dong Hee Na Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals Reprinted from: Pharmaceutics 2018, 10, 131, doi:10.3390/pharmaceutics10030131 ........