(12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin Et Al USOO9636405B2 (12) United States Patent (10) Patent No.: US 9,636.405 B2 Tamarkin et al. (45) Date of Patent: May 2, 2017 (54) FOAMABLE VEHICLE AND (56) References Cited PHARMACEUTICAL COMPOSITIONS U.S. PATENT DOCUMENTS THEREOF M (71) Applicant: Foamix Pharmaceuticals Ltd., 1,159,250 A 1 1/1915 Moulton Rehovot (IL) 1,666,684 A 4, 1928 Carstens 1924,972 A 8, 1933 Beckert (72) Inventors: Dov Tamarkin, Maccabim (IL); Doron 2,085,733. A T. 1937 Bird Friedman, Karmei Yosef (IL); Meir 33 A 1683 Sk Eini, Ness Ziona (IL); Alex Besonov, 2,586.287- 4 A 2/1952 AppersonO Rehovot (IL) 2,617,754. A 1 1/1952 Neely 2,767,712 A 10, 1956 Waterman (73) Assignee: EMY PHARMACEUTICALs 2.968,628 A 1/1961 Reed ... Rehovot (IL) 3,004,894. A 10/1961 Johnson et al. (*) Notice: Subject to any disclaimer, the term of this 3,062,715. A 1 1/1962 Reese et al. tent is extended or adiusted under 35 3,067,784. A 12/1962 Gorman pa 3,092.255. A 6/1963 Hohman U.S.C. 154(b) by 37 days. 3,092,555 A 6/1963 Horn 3,141,821 A 7, 1964 Compeau (21) Appl. No.: 13/793,893 3,142,420 A 7/1964 Gawthrop (22) Filed: Mar. 11, 2013 3,144,386 A 8/1964 Brightenback O O 3,149,543 A 9/1964 Naab (65) Prior Publication Data 3,154,075 A 10, 1964 Weckesser US 2013/0189193 A1 Jul 25, 2013 3,178,352. A 4 1965 Erickson (Continued) Related U.S. Application Data FOREIGN PATENT DOCUMENTS (63) Continuation of application No. 13/708,284, filed on AU 19878O257 9, 1986 Dec. 7, 2012, now abandoned, which is a continuation AU 7825.15 12/2005 of application No. 12/767,511, filed on Apr. 26, 2010, (Continued) now Pat. No. 8.362,091, which is a continuation of application No. 11/430,599, filed on May 9, 2006, OTHER PUBLICATIONS now Pat. No. 7.704,518, and a continuation-in-part of application No. 10/835,505, filed on Apr. 28, 2004, Sorbitan esters online retrieved on Jul. 1, 2016 from: http://www. now Pat. No. 7,820,145. drugfuture.com/chemdata sorbitan-esters.html 2 pages. Chapter 1 Meaning of HLB Advantages and Limitations 1980; 4 (60) Provisional application No. 60/679,020, filed on May pages. 9, 2005, provisional application No. 60/784,793, filed Sreenivasan et al. (Journal of the American Oil Chemists Society. on Mar. 21, 2006, provisional application No. 1956:33:61-66).* 6O753O O15 filed O Dec. 16 2003 provisional U.S. Appl. No. 60/815,948, filed Jun. 23, 2006, Tamarkin. vs. c. s s U.S. Appl. No. 60/818,634, filed Jul. 5, 2006, Friedman. application No. 60/492.385, filed on Aug. 4, 2003. U.S. Appl. No. 60/843,140, filed Sep. 8, 2006, Tamarkin. (51) Int. Cl. U.S. Appl. No. 61/248,144, filed Oct. 2, 2009, Tamarkin. A6 IK 47/10 (2017.01) U.S. Appl. No. 61/322,148, filed Apr. 8, 2010, Tamarkin. A6 IK 9/12 (2006.01) U.S. Appl. No. 61/363,577, filed Jul. 12, 2010, Eini. A6IL 9/01 (2006.01) (Continued) A61O 19/00 (2006.01) A6 IK 8/04 (2006.01) Primary Examiner — Ernst V Arnold A6 IK 9/00 (2006.01) (74) Attorney, Agent, or Firm — Finnegan, Henderson, A6 IK 47/4 (2017.01) Farabow, Garrett & Dunner LLP. A6 IK 47/38 (2006.01) AOIN 25/16 (2006.01) (57) ABSTRACT (52) U.S. Cl. Ahvgroscopicygroscop1c ppharmaceutical compositionp includes at least CPC .............. A61K 47/10 (2013.01); A0IN 25/16 one hygroscopic Substance at a concentration Sufficient to (2013.01); A61K 8/046 (2013.01); A61 K provide an Aw value of less than 0.9 or about 0.9 to about 9/0014 (2013.01); A61K 9/0034 (2013.01); 0.7 and an antiinfective agent. A foamble pharmaceutical A61K 9/12 (2013.01); A61K 9/122 (2013.01); carrier includes about 50% to about 98% of a polar solvent A61K 47/14 (2013.01); A61K 47/38 (2013.01); selected from the group consisting of a polyol and PEG: 0% A61O 19/00 (2013.01); YIOS 514/945 to about 48% of a secondary polar solvent; about 0.2% to (2013.01) about 5% byy weight of a surface-active agent;9. about 0.01% (58) Field of Classification Search to about 5% by weight of at least one polymeric agent; and CPC ...... A61K 47/10; A61K 8/046; A61K 9/0014: a liquefied or compressed gas propellant at a concentration A61K 9/0034; A61 K9/12: A61 K 9/122; of about 3% to about 25% by weight of the total composi A61L 9/01: A61L 9/042: A61Q 19/00; tion. Y1OS 514/945 See application file for complete search history. 25 Claims, 1 Drawing Sheet US 9,636.405 B2 Page 2 (56) References Cited 4,214,000 A 7/1980 Papa 4,226,344 A 10, 1980 Booth et al. U.S. PATENT DOCUMENTS 4,229,432 A 10, 1980 Geria 4,230,701 A 10, 1980 Hollick et al. 3,236,457 A 2, 1966 Kennedy et al. 4,241,048 A 12/1980 Durbak et al. 3,244,589 A 4, 1966 Sunnen 4,241,149 A 12/1980 Labes et al. 3,252,859 A 5, 1966 Silver 4,252,787 A 2, 1981 Sherman et al. 3,261,695 A 7, 1966 Sienkiewicz 4,254,104 A 3, 1981 Suzuki et al. 3,262,867 A 7, 1966 Lehmann 4,268.499 A 5, 1981 Keil 3,263,869 A 8, 1966 Corsette 4,271,149 A 6, 1981 Winicov et al. 3,298.919 A 1/1967 Bishop et al. 4.278,206 A 7/1981 Prussin 3,301,444 A 1, 1967 Wittke 4,292,250 A 9, 1981 DeLuca et al. 3,303,970 A 2f1967 Breslau et al. 4,292,326 A 9, 1981 Nazzaro-Porro et al. 3,330,730 A 7, 1967 Hernandez 4,299,826 A 11/1981 Luedders 3,333,333 A 8, 1967 Noack 4,305,936 A 12/1981 Klein 3,334,147 A 8, 1967 Brunelle et al. 4,309,995 A 1/1982 Sacco 3,342,845. A 9/1967 Sayigh et al. 4,310,510 A 1/1982 Sherman et al. 3,346,451 A 10/1967 Collins et al. 4.323,582 A 4/1982 Siegel et al. 3,366,494. A 1, 1968 Bower et al. 4.323,694. A 4, 1982 Scala, Jr. 3,369,034 A 2f1968 Chalmers 4.325,939 A 4, 1982 Shah 3,377,004 A 4, 1968 Wittke 4.329,990 A 5, 1982 Sneider 3,383,280 A 5, 1968 Kuehns 4,335,120 A 6, 1982 Holick et al. 3,384,541 A 5, 1968 Clark et al. 4.338,211 A * 7/1982 Stiros ....................... A61K 8/42 3,395,214 A 7, 1968 Mummert 510, 159 3,395.215 A 7, 1968 Schubert 4,352,808 A 10, 1982 Rane et al. 3,401,849 A 9/1968 Weber, III 4,363,806 A 12/1982 Bergström et al. 3.419,658 A 12/1968 Sanders 4.385,161 A 5/1983 Caunt et al. 3.456,052 A 7, 1969 Gordon 4,386,104 A 5/1983 Nazzaro-Porro 3,527,559 A 9, 1970 Sliwinski 4,393,066 A 7/1983 Garrett et al. 3,540,448 A 11/1970 Sunnen 4.427,670 A 1/1984 Ofuchi et al. 3,559,890 A 2f1971 Brooks et al. 4,439,416 A 3, 1984 Cordon et al. 3,561,262 A 2f1971 Borucki 4,439,441 A 3/1984 Hallesy et al. 3,563,098 A 2/1971 Weber, III 4,440,320 A 4, 1984 Wernicke 3,574,821 A 4, 1971 Pfirrmann 4,447.486 A 5/1984 Hoppe et al. 3,577,518 A 5/1971 Shepherd 4,469,674. A 9, 1984 Shah et al. 3,667,461 A 6, 1972 Zamarra 4,508,705 A 4, 1985 Chaudhuri et al. 3,751,562 A 8, 1973 Nichols 4,522,948 A 6, 1985 Walker 3,770,648 A 11/1973 Mackles 4,529,601 A 7/1985 Broberg et al. 3,787,566 A 1/1974 Gauvreau 4,529,605 A 7, 1985 Lynch et al. 3,819,524 A 6, 1974 Schubert et al. 4,552,872 A 11/1985 Cooper et al. 3,824.303 A * 7/1974 Lanzet et al. ................... 424/47 4,574,052 A 3/1986 Gupte et al. 3,841,525 A 10/1974 Siegel 4,576,961 A 3, 1986 Lorck et al. 3,849,569 A 11/1974 Mead 4,595,526 A 6, 1986 Lai 3,849,580 A 11/1974 Weinstein et al. 4,603,812 A 8, 1986 Stoesser et al. 3,865,275 A 2f1975 De Nunzio 4,607,101 A 8, 1986 Bernstein 3,866,800 A 2, 1975 Schmitt 4,627,973 A 12/1986 Moran et al. 3,878,118 A 4, 1975 Watson 4,628,063 A 12/1986 Haines et al. 3,882,228 A 5/1975 Boncey et al. 4,661,340 A 4, 1987 Nagy née Kricsfalussy et al. 3,886,084 A 5, 1975 Vassiliades 4,661.524. A 4, 1987 Thomson et al. 3,890,305 A 6, 1975 Weber et al.
Recommended publications
  • Combined Effects of Celecoxib and Cepharanthine on Human Colorectal Cancer Cells in Vitro
    Journal of Applied Pharmaceutical Science Vol. 9(04), pp 117-125, April, 2019 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2019.90415 ISSN 2231-3354 Combined effects of celecoxib and cepharanthine on human colorectal cancer cells in vitro Parawee Lerdwanangkun1, Piyanuch Wonganan1, Robin James Storer2, Wacharee Limpanasithikul1* 1Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. 2Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. ARTICLE INFO ABSTRACT Received on: 11/09/2018 Colorectal cancer is one of the most common cancers worldwide. We investigated the combined effects of celecoxib Accepted on: 22/01/2019 (CLX)–cepharanthine (CEP) on HT-29 human colorectal cancer cells. CLX at 5, 10, 20, or 40 µM in combination Available online: 18/04/2019 with CEP at 1.25, 2.5, or 5 µM displayed synergistic cytotoxic effects with a combination index <1. Combinations of 20 or 40 µM of CLX with 1.25 or 2.5 µM of CEP increased HT-29 cell accumulation at the G1 phase of the cell cycle. The combined treatments increased the levels of p21 mRNA and decreased the levels of cyclin-A2 mRNA. Their Key words: combined effect triggered significant apoptosis of HT-29 cells when compared with the effect of each drug alone. The Celecoxib, cepharanthine, apoptotic effects of the drugs were correlated with increases in the levels of mRNA for BAX and decreases in the colorectal cancer, apoptosis, levels of mRNA for Bcl-xL. The results from this study revealed that at concentrations that were sub-IC individually, cell cycle.
    [Show full text]
  • Antimicrobial Resistance and Disinfectants Susceptibility of Persistent Bacteria in a Tertiary Care Hospital
    Journal of Microbiology and Antimicrobials Vol. 2(7), pp. xx-xx, October 2010 Available online http://www.academicjournals.org/JMA ISSN 2141-2308 ©2010 Academic Journals Full Length Research Paper Antimicrobial resistance and disinfectants susceptibility of persistent bacteria in a tertiary care hospital Maria Lucia Morcerf Bouzada1, Vania Lucia Silva1, Felipe Augusto Sa Moreira1, Girlene Alves Silva2 and Claudio Galuppo Diniz1* 1Department of Parasitology, Microbiology and Immunology, Laboratory of Bacterial Physiology and Molecular Genetics, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora/MG,36036-900, Brazil. 2Department of Applied Nursing, School of Nursing, Federal University of Juiz de Fora, Juiz de Fora/MG, 36036-900, Brazil. Accepted 22 October, 2010 It is well known that putative pathogenic bacteria are ubiquitous and widely distributed in the hospital environment. This study aimed to detect bacterial persistence in the nosocomial environment (different critical areas of the hospital) after mopping by the cleaning staff. Susceptibility patterns to antimicrobial drugs and disinfectants commonly used in health services were also investigated by disk diffusion and agar dilution tests. Rinse water from mops was processed for isolation of Enterobacteriaceae (GNR), non-fermenting Gram-negative rods (NFGNR), coagulase-negative staphylococci (CNS) and enterococci (ENT). Microorganisms were biochemically characterized and 547 strains were recovered. Only CNS and NFGNR were isolated in all critical areas. Overall 67% of the isolated bacteria were resistant to more than three drugs, being considered as multiresistant. Disinfectants were effective in concentrations ranging from 0.125 to 1%. Hospitals provide reservoirs of multiresistant microorganisms borne by patients and staff, but the hospital environment may be an important repository.
    [Show full text]
  • Specifications of Approved Drug Compound Library
    Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format.
    [Show full text]
  • Medical Botany 6: Active Compounds, Continued- Safety, Regulations
    Medical Botany 6: Active compounds, continued- safety, regulations Anthocyanins / Anthocyanins (Table 5I) O Anthocyanidins (such as malvidin, cyanidin), agrocons of anthocyanins (such as malvidin 3-O- glucoside, cyanidin 3-O-glycoside). O All carry cyanide main structure (aromatic structure). ▪ Introducing or removing the hydroxyl group (-OH) from the structure, The methylation of the structure (-OCH3, methoxyl group), etc. reactants and color materials are shaped. It is commonly found in plants (plant sap). O Flowers, leaves, fruits give their colors (purple, red, red, lilac, blue, purple, pink). O The plant's color is related to the pH of the cell extract. O Red color anthocyanins are blue, blue-purple in alkaline conditions. O Effects of many factors in color As the pH increases, the color becomes blue. the phenyl ring attached to C2; • As the OH number increases, the color becomes blue, • color increases as the methoxyl group increases. O Combination of flavonoids and anthocyanins produces blue shades. There are 6 anthocyanidins, more prevalent among ornamental-red. 3 of them are hydroxylated (delfinine, pelargonidine, cyanidin), 3 are methoxylated (malvidin, peonidin, petunidin). • Orange-colored pelargonidin related. O A hydroxyl group from cyanide contains less. • Lilac, purple, blue color is related to delphinidin. It contains a hydroxyl group more than cyanide. • Three anthocyanidines are common in methyl ether; From these; Peonidine; Cyanide, Malvidin and petunidin; Lt; / RTI & gt; derivative. O They help to pollinize animals for what they are attracted to. Anthocyanins and anthocyanidins are generally anti-inflammatory, cell and tissue protective in mammals. O Catches and removes active oxygen groups (such as O2 * -, HO *) and prevents oxidation.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group D07A (Corticosteroids, Plain) Table of Contents Page INTRODUCTION 4 DISCLAIMER 6 GLOSSARY OF TERMS USED IN THIS DOCUMENT 7 ACTIVE SUBSTANCES Methylprednisolone (ATC: D07AA01) 8 Hydrocortisone (ATC: D07AA02) 9 Prednisolone (ATC: D07AA03) 11 Clobetasone (ATC: D07AB01) 13 Hydrocortisone butyrate (ATC: D07AB02) 16 Flumetasone (ATC: D07AB03) 18 Fluocortin (ATC: D07AB04) 21 Fluperolone (ATC: D07AB05) 22 Fluorometholone (ATC: D07AB06) 23 Fluprednidene (ATC: D07AB07) 24 Desonide (ATC: D07AB08) 25 Triamcinolone (ATC: D07AB09) 27 Alclometasone (ATC: D07AB10) 29 Hydrocortisone buteprate (ATC: D07AB11) 31 Dexamethasone (ATC: D07AB19) 32 Clocortolone (ATC: D07AB21) 34 Combinations of Corticosteroids (ATC: D07AB30) 35 Betamethasone (ATC: D07AC01) 36 Fluclorolone (ATC: D07AC02) 39 Desoximetasone (ATC: D07AC03) 40 Fluocinolone Acetonide (ATC: D07AC04) 43 Fluocortolone (ATC: D07AC05) 46 2 Diflucortolone (ATC: D07AC06) 47 Fludroxycortide (ATC: D07AC07) 50 Fluocinonide (ATC: D07AC08) 51 Budesonide (ATC: D07AC09) 54 Diflorasone (ATC: D07AC10) 55 Amcinonide (ATC: D07AC11) 56 Halometasone (ATC: D07AC12) 57 Mometasone (ATC: D07AC13) 58 Methylprednisolone Aceponate (ATC: D07AC14) 62 Beclometasone (ATC: D07AC15) 65 Hydrocortisone Aceponate (ATC: D07AC16) 68 Fluticasone (ATC: D07AC17) 69 Prednicarbate (ATC: D07AC18) 73 Difluprednate (ATC: D07AC19) 76 Ulobetasol (ATC: D07AC21) 77 Clobetasol (ATC: D07AD01) 78 Halcinonide (ATC: D07AD02) 81 LIST OF AUTHORS 82 3 INTRODUCTION The availability of medicines with or without a medical prescription has implications on patient safety, accessibility of medicines to patients and responsible management of healthcare expenditure. The decision on prescription status and related supply conditions is a core competency of national health authorities.
    [Show full text]
  • Identification of Genes Involved in Acid Tolerance, Antimicrobial Resistance and Virulence of Enterococcus Faecium
    Identification of genes involved in acid tolerance, antimicrobial resistance and virulence of Enterococcus faecium Thesis submitted by Hashimatul Fatma binti Hashim For the degree of DOCTOR OF PHILOSOPHY in the Faculty of Medical Sciences University College London Division of Microbial Diseases UCL Eastman Dental Institute 256 Gray’s Inn Road London WC1X 8LD UK 2016 Declaration I hereby certify that the work embodied in this thesis is the result of my own investigation, except where otherwise stated. 2 Abstract Enterococcus faecium is an opportunistic human nosocomial pathogen that has developed resistance to many existing antimicrobial therapies. Treatment of enterococcal infections is becoming increasingly challenging and there are limited therapeutic options against multidrug-resistant enterococci. The work described in this thesis aimed to identify genes involved in resistance to host stresses and virulence as these could potentially be future therapeutic targets. An E. faecium transposon mutant library was screened for altered resistance to lysozyme and to nisin as a model antimicrobial peptide. This approach led to the identification of several genes that contribute to lysozyme and nisin resistance. A number of mutants that were sensitive to nisin had a transposon insertion in a gene predicted to encode a tyrosine decarboxylase. It was shown that the tyrosine decarboxylase plays a role in acid tolerance and mediates virulence of E. faecium in a Galleria mellonella larvae infection model. A targeted genetic approach was used to examine the role of an E. faecium serine threonine protein kinase (Stk1) in antimicrobials resistance, host cell stresses and virulence. Disruption of the stk1 gene led to higher sensitivity to antibiotics that target the penicillin- binding proteins and bile salts compared to the wild type.
    [Show full text]
  • Study Protocol: LPCN 1021-18-001
    Oral Testosterone Undecanoate Protocol No. LPCN 1021-18-001 Lipocine Inc. TU, LPCN 1021 675 Arapeen Drive, Suite 202 Salt Lake City, UT-84108 1.0 TITLE PAGE Clinical Study Protocol: LPCN 1021-18-001 Ambulatory Blood Pressure Monitoring in Oral Testosterone Undecanoate (TU, LPCN 1021) Treated Hypogonadal Men. Investigational Product : Testosterone Undecanoate (TU, LPCN 1021) Date of Protocol : 19 February 2019 FDA IND No. : 106476 Development Phase : Phase 3 Testosterone replacement therapy in adult, 18 years or older, males for conditions associated with a deficiency or absence of endogenous Indication : testosterone – primary hypogonadism (congenital or acquired) or secondary hypogonadism (congenital or acquired) Investigator : Multi-Center, US Sponsor : Lipocine Inc. 675 Arapeen Drive, Suite 202, Salt Lake City, Utah – 84108 Tel: +1-801-994-7383 Fax: +1-801-994-7388 Sponsor / : Nachiappan Chidambaram Emergency Contact 675 Arapeen Drive, Suite 202, Salt Lake City, Utah – 84108 Tel: +1-801-994-7383, Ext 2188 Fax: +1-801-994-7388 Email: [email protected] Protocol Version : 06 Confidentiality Statement This document is a confidential communication of Lipocine Inc. Acceptance of this document signifies agreement by the recipient that no unpublished information contained within will be published or disclosed to a third party without prior written approval, except that this document may be disclosed to an Institutional Review Board under the same conditions of confidentiality. Date: 19 February 2019 Confidential Page 1 of 50 Oral Testosterone Undecanoate Protocol No. LPCN 1021-18-001 Lipocine Inc. TU, LPCN 1021 675 Arapeen Drive, Suite 202 Salt Lake City, UT-84108 2.0 SUMMARY OF CHANGES TO PROTOCOL VERSION 2 Version 02 of the LPCN 1021-18-001 study protocol was developed to make the following changes to the study: • Added sexual desire and sexual distress questions to pre-treatment and post-treatment phases of the study.
    [Show full text]
  • Clinical Review Nicholas Rister, MD NDA 021572 Cubicin (Daptomycin for Injection)
    Clinical Review Nicholas Rister, MD NDA 021572 Cubicin (Daptomycin for injection) CLINICAL REVIEW Application Type NDA supplement Application Number(s) 21572 Priority or Standard Priority Submit Date(s) March 1, 2017 Received Date(s) March 2, 2017 PDUFA Goal Date September 2, 2017 Division / Office DAIP/OAP Reviewer Name(s) Nicholas Rister, MD Review Completion Date August 4, 2017 Established Name Daptomycin (Proposed) Trade Name Cubicin Therapeutic Class Cyclic Lipopeptide Applicant Cubist Pharmaceuticals Formulation(s) Injection Dosing Regimen 7 mg/kg (12-17 years), 9 mg/kg (7-11 years), and 12 mg/kg (1-6 years) Indication(s) Bacteremia caused by Staphylococcus aureus Intended Population(s) Ages 1-17 years 1 Reference ID: 4142515 Clinical Review Nicholas Rister, MD NDA 021572 Cubicin (Daptomycin for injection) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 7 1.1 Recommendation on Regulatory Action ............................................................. 7 1.2 Risk Benefit Assessment .................................................................................... 7 1.3 Recommendations for Postmarket Risk Evaluation and Mitigation Strategies ... 8 1.4 Recommendations for Postmarket Requirements and Commitments ................ 8 2 INTRODUCTION AND REGULATORY BACKGROUND ........................................ 8 2.1 Product Information ............................................................................................ 8 2.2 Tables of Currently Available Treatments
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen Et Al
    USOO8603526B2 (12) United States Patent (10) Patent No.: US 8,603,526 B2 Tygesen et al. (45) Date of Patent: Dec. 10, 2013 (54) PHARMACEUTICAL COMPOSITIONS 2008. O152595 A1 6/2008 Emigh et al. RESISTANT TO ABUSE 2008. O166407 A1 7/2008 Shalaby et al. 2008/0299.199 A1 12/2008 Bar-Shalom et al. 2008/0311205 A1 12/2008 Habib et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 2009/0022790 A1 1/2009 Flath et al. Jan Martin Oevergaard, Frederikssund 2010/0203129 A1 8/2010 Andersen et al. (DK); Karsten Lindhardt, Haslev (DK); 2010/0204259 A1 8/2010 Tygesen et al. Louise Inoka Lyhne-versen, Gentofte 2010/0239667 A1 9/2010 Hemmingsen et al. (DK); Martin Rex Olsen, Holbaek 2010, O291205 A1 11/2010 Downie et al. (DK); Anne-Mette Haahr, Birkeroed 2011 O159100 A1 6/2011 Andersen et al. (DK); Jacob Aas Hoellund-Jensen, FOREIGN PATENT DOCUMENTS Frederikssund (DK); Pemille Kristine Hoeyrup Hemmingsen, Bagsvaerd DE 20 2006 014131 1, 2007 (DK) EP O435,726 8, 1991 EP O493513 7, 1992 EP O406315 11, 1992 (73) Assignee: Egalet Ltd., London (GB) EP 1213014 6, 2002 WO WO 89,09066 10, 1989 (*) Notice: Subject to any disclaimer, the term of this WO WO91,040 15 4f1991 patent is extended or adjusted under 35 WO WO95/22962 8, 1995 U.S.C. 154(b) by 489 days. WO WO99,51208 10, 1999 WO WOOOf 41704 T 2000 WO WO 03/024426 3, 2003 (21) Appl. No.: 12/701,429 WO WOO3,O24429 3, 2003 WO WOO3,O24430 3, 2003 (22) Filed: Feb.
    [Show full text]