Glass-Polymer Composite High Pressure Pipes and Joints - Design, Manufacture & Characterize
Total Page:16
File Type:pdf, Size:1020Kb
FINAL REPORT U.S. DOT Pipeline and Hazardous Materials Safety Administration Competitive Academic Agreement Program Glass-Polymer Composite High Pressure Pipes and Joints - Design, Manufacture & Characterize West Virginia University CAAP Final Report Date of Report: September 29, 2018 Contract Number: DTPH5616HCAP02 Prepared for: U.S. Department of Transportation/Pipeline and Hazardous Materials Safety Administration (USDOT-PHMSA) Project Title: Glass-Polymer Composite High Pressure Pipes and Joints - Design, Manufacture & Characterize Prepared by: West Virginia University, Constructed Facilities Center (WVU-CFC) Project PI/co-PI: Hota V. S. GangaRao, Udaya B. Halabe, John Zondlo, Mark Skidmore Graduate Students: Ben Imes, Jonas Kavi, Andrew Pacifico, Ronald Alexander, Andrew Cvetnick, Patrick Sisler Contact Information: Dr. Hota V. S. GangaRao, Professor, CEE Department, WVU Email: [email protected] Phone: 304-293-9986 Project ending date: September 29, 2018 ii Acknowledgement The authors gratefully acknowledge the funding for this project provided by USDOT- PHMSA’s Competitive Academic Agreement Program under Contract No. DTPH5616HCAP02. iii Executive Summary The United States of America has about 2.65 million miles of distribution mains plus transmission lines. Even though it has been established that smaller diameter pipelines are safer to operate, gas pipeline industry needs cost-effective ways to transmit larger volumes of gas over long distances at higher pressures with at least 50 years of service life. Recognizing that current gas pipelines are made primarily of steel which is subjected to corrosion and hydrogen embrittlement, the proposed project focuses on developing glass fiber reinforced polymer (GFRP) composite pipes including a range of joining systems. A few of the many advantages of GFRP composite pipes are their non-corrosiveness, magnetic transparency, and high strength-to-weight ratio. As a part of this project, GFRP pipes and joints were designed, manufactured, and evaluated under static loads. Emphasis was placed in the evaluation of stress-rupture (burst pressure) of GFRP composite pipes that could withstand internal pressures as high as 5000 psi. The report also includes design and testing of high pressure composite joints for these pipes. In addition, the report discusses the use of Ground Penetrating Radar (GPR) for successfully detecting the FRP pipes under buried condition. The report also includes detection of gas leakage from buried pipes using mass spectroscopy. iv Table of Contents CAAP Final Report ............................................................................................................................... ii Acknowledgement ................................................................................................................................ iii Executive Summary ............................................................................................................................. iv Table of Contents .................................................................................................................................. v List of Figures..................................................................................................................................... viii List of Tables ....................................................................................................................................... xii 1 INTRODUCTION ........................................................................................................................ 1 1.1 Background .............................................................................................................................. 1 1.2 Safety....................................................................................................................................... 2 1.3 Research Objectives ................................................................................................................. 2 2 FRP PIPE DEVELOPMENT ....................................................................................................... 4 2.1 Introduction ............................................................................................................................. 4 2.2 Kenway Pipe Specifications ..................................................................................................... 4 2.2.1 Filament Wound Pipes- ⅜ Wall Samples ............................................................................. 4 2.2.2 Filament Wound Pipes- ¾ Wall Samples ............................................................................. 6 2.3 Manufacturing of FRP Pipe ...................................................................................................... 7 2.4 Hydrostatic Pressure Test Methodology.................................................................................... 8 2.4.1 Loading System .................................................................................................................. 8 2.4.2 Samples and Testing ......................................................................................................... 14 2.5 Experimental Results.............................................................................................................. 15 2.5.1 Filament-Wound Pipes- ⅜ Wall Samples .......................................................................... 15 2.5.2 Filament Wound Pipes – ¾ Wall Samples ......................................................................... 19 2.6 Conclusions ........................................................................................................................... 23 3 FRP JOINTS ............................................................................................................................... 24 3.1 Introduction ........................................................................................................................... 24 3.2 Hydrostatic Pressure Test Methodology.................................................................................. 24 3.3 Experimental Results.............................................................................................................. 25 3.4 Scarf Joints ............................................................................................................................ 26 3.5 Conclusions ........................................................................................................................... 27 4 THEORETICAL CORRELATION........................................................................................... 28 v 4.1 Introduction ........................................................................................................................... 28 4.2 Thin Walled Isotropic Cylinders ............................................................................................. 28 4.2.1 Assumptions ..................................................................................................................... 28 4.2.2 Determination of Stresses ................................................................................................. 29 4.3 Thin Walled Composite Cylinders .......................................................................................... 31 4.4 Elastic Behavior of Orthotropic Materials ............................................................................... 32 4.4.1 Classical Lamination Theory (CLT) .................................................................................. 32 4.4.2 Loading Vector ................................................................................................................. 32 4.5 Failure Behavior of Composite Materials................................................................................ 33 4.5.1 General Comments on Failure Progression ...................................................................... 34 4.5.2 Failure Progression through Ply Discount Methods .......................................................... 34 4.5.3 Strain Energy Density Failure Theory ............................................................................... 38 4.6 Elastic Analysis of Kenway Pipes........................................................................................... 40 4.6.1 Elastic Analysis- ⅜ Wall Samples ..................................................................................... 40 4.6.2 Commentary on Elastic Properties.................................................................................... 46 4.6.3 Elastic Analysis- ¾ Wall Samples ..................................................................................... 48 4.6.4 Commentary on Elastic Properties.................................................................................... 52 4.7 Failure Analysis of Kenway Pipes .......................................................................................... 52 4.8 Analytical Prediction vs Hydrostatic Burst Pressure Results ................................................... 53 4.8.1 Caveats Regarding Testing and Analysis........................................................................... 53 4.8.2 Elastic Prediction ............................................................................................................. 55 4.8.3 Failure Prediction ............................................................................................................ 61 4.9 Conclusions ..........................................................................................................................