BMC Pharmacology BioMed Central Research article Open Access Dibenzazecine compounds with a novel dopamine/5HT2A receptor profile and 3D-QSAR analysis Alexandra Hamacher1, Mathias Weigt1, Michael Wiese1, Barbara Hoefgen1, Jochen Lehmann2 and Matthias U Kassack*1 Address: 1Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany and 2Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743 Jena, Germany Email: Alexandra Hamacher -
[email protected]; Mathias Weigt -
[email protected]; Michael Wiese -
[email protected]; Barbara Hoefgen -
[email protected]; Jochen Lehmann -
[email protected]; Matthias U Kassack* -
[email protected] * Corresponding author Published: 15 September 2006 Received: 24 April 2006 Accepted: 15 September 2006 BMC Pharmacology 2006, 6:11 doi:10.1186/1471-2210-6-11 This article is available from: http://www.biomedcentral.com/1471-2210/6/11 © 2006 Hamacher et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Antipsychotics are divided into typical and atypical compounds based on clinical efficacy and side effects. The purpose of this study was to characterize in vitro a series of novel azecine-type compounds at human dopamine D1-D5 and 5HT2A receptors and to assign them to different classes according to their dopamine/5HT2A receptor profile. Results: Regardless of using affinity data (pKi values at D1-D5 and 5HT2A) or selectivity data (15 log (Ki ratios)), principal component analysis with azecine-type compounds, haloperidol, and clozapine revealed three groups of dopamine/5HT2A ligands: 1) haloperidol; 2) clozapine plus four azecine-type compounds; 3) two hydroxylated dibenzazecines.