Check List and Authors Chec List Open Access | Freely Available at Journal of Species Lists and Distribution Pecies

Total Page:16

File Type:pdf, Size:1020Kb

Check List and Authors Chec List Open Access | Freely Available at Journal of Species Lists and Distribution Pecies ISSN 1809-127X (online edition) © 2011 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution PECIES S Western Andes, Valle del Cauca, Colombia OF Chiroptera, mid-Calima River Basin, Pacific Slope of the 1, 2 * 2 ISTS Carlos A. Saavedra-Rodríguez and Vladimir Rojas-Díaz L 1 Universidad del Valle, Departamento de Biología, Grupo de Investigación en Ecología Animal. Calle 13 # 100 - 00. Sede Meléndez. A.A 25360. Cali, Colombia 2 Wildlife Conservation Society Colombia Program. Carrera 25 # 4 - 39, Cali, Colombia * Corresponding author. E-mail: [email protected] Abstract: compile a bat species checklist recorded for the Basin and describe the bat diversity patterns found in the mid-Calima Basin (the gradient The from Calima 300 River– 1,400 Basin m a.s.l.).is part The of the checklist Chocó comprisesBiogeográfico 55 batEcoregion species in for the the Pacific Basin. Coast In the of Colombia.mid-Calima, Here, 31 batwe species occur (permanently or seasonally). Our results show complementary diversity patterns of bat assemblages living species coexists. The sampled area is located where the Chocó and the Andes biogeographical regions are connected. The Calimabelow and River above Basin 1,000 has highm. We bat also richness, identified high an variation overlap inzone species between composition 800 – 1,200 along m a.s.l.the elevational where at least gradient, three pairsand harbours of sister threatened and endemic species, highlighting its importance for conservation. Introduction 1970-2000 (i.e. Alberico 1981). The sector of the Calima River Basin that we will call ‘mid-Calima’ was sampled with larger effort during the 1980’s in order to evaluate of north-westernThe Chocó Biogeográfico Ecuador and is athe very Caribbean wet region Coast which in the environmental impacts of the hydroelectric building Panamá.includes theThis whole region Pacific (usually Coast called of Colombia Ecoregion) and ahas portion been project ‘Calima III’ (EPSA, CVC unpublished data). Some specimens from the area had been deposited in collections Winter 1983; Olson and Dinerstein 1998; Myers et al. in Colombia and around the world (see Muñoz-Saba and 2000)identified with as high a global levels biodiversity of endemism hotspot in diverse (Terborgh biological and Alberico 2004). groups (Gentry 1986; Faner-Langerdoen and Gentry 1991). There are multiple proposals about the limit where Calima an ‘overlap zone’ where highland and lowland Chocó and Andean faunas are overlapped based on a speciesBased could on this occur background, syntopically. we Our identified aim with into this the study mid- is set of environmental variables and suggesting different to describe the bat diversity pattern along the elevational elevational limits (i.e. Galvis and Mojica 1993; Poveda-M. gradient in the mid-Calima River Basin and to highlight the et al. 2004). importance of this region. The knowledge about the bat assemblages from the Materials and methods efforts in localities below 300 m a.s.l. (see Mantilla-Meluk Study area andChocó Jiménez-Ortega Biogeográfico 2006is mainly), with based few onstudies short examining sampling The Calima River Basin is located at the western slope localities at mid-elevation (Alberico and Orejuela 1982; of the Cordillera Occidental, into the Valle del Cauca Cadena et al. 1999; Dávalos and Guerrero 1999; Ospina- Department, Colombia. The watershed encompasses ca. Ante and Gómez 1999). Therefore, there are many gaps in 1,400 km2, and has more than 120 km in length. The River our understanding of species distribution (Mantilla-Meluk source is located over 3,600 m at the Cerro Calima, initially and Jiménez-Ortega 2006) and diversity patterns at local and regional scales. In the Ecoregion, when accepting 800 m a.s.l. as superior elevational limit, almost 100 species of untilflowing it reaches south theand San then Juan turning River atwest ca. 50a mfew a.s.l. kilometers from the bats have been recorded (Muñoz-Saba and Alberico 2004; borderbefore thebetween Calima Valle river del dam. Cauca From and this Chocó point, Departments. it flows west Mantilla-Meluk and Jiménez-Ortega 2006), representing The watershed comprises two administrative units called 58% of the bat fauna reported for Colombia (Alberico Municipios (Calima-Darién and Buenaventura) (Figure 1). et al. 2000). Sixty two out of these almost 100 species There are multiple ecosystems present in the region: very belong to the leaf-nosed bat family (Phyllostomidae), wet tropical (50 m a.s.l.), wet (800 m a.s.l.), and premontane which represents 52%, of the phyllostomids registered rain forest (1,300 m a.s.l.). Average rainfall ranges from for Colombia (Alberico et al. 2000; Mantilla-Meluk et al. 7,000 to 8,000 mm/yr in very wet tropical forest, from 2009). 3,000 to 4,000 mm/yr in wet forest, and 1,000 to 2,000 The Calima River Basin is a portion of the Chocó mm/yr in premontane rain forest. Rainfall is highest in October in very wet tropical forest, but in wet tropical and Department, Colombia. The lowlands in the Calima River premontane rain forest the highest precipitation occurs Basin,Biogeográfico near the SanEcoregion Juan River, into were the sampled Valle indel the Cauca early in November. The precipitation tendency is similar year 1900´s (Chapman 1917) and later during different periods round in wet tropical and premontane rain forest, while Check List | Volume 7 | Issue 2 | 2011 166 Saavedra-Rodríguez and Rojas-Díaz | Chiroptera, mid-Calima River Basin, Colombia in very wet forest there is more contrast between months from bat collections made on the known portion of the (CVC 1988 – 1991; Figure 2). Calima River Basin (60 – 1,400 m a.s.l.), and a list obtained The Calima River Basin still contains large forest tracts that had been protected because they are important to existing collections from lowlands belong to the Estación the hydroelectric power generation. The forested areas Agro-Forestalduring fieldwork Bajo developed Calima (4°0’2.304” into mid-Calima. N, 76°56’55.399” Most of the encompass elevations from 60 m a.s.l. (Estación Agro- W) located at ca. 60 m a.s.l.. This site is separated by 30 km Forestal Bajo Calima) to 1,400 m a.s.l. (Calima power dam reservoir), and further up to the páramo area at 3,600 The bat diversity was assessed in the mid-Calima which m a.s.l.. encompassesfrom Río Chancos three (the sites, first covering sampling a section site in approximately mid-Calima). despite the middle elevation area of a basin in a strict sense 19 km in length and a 1,000 m elevation range from 300 to should referHere to we a higher need to elevational introduce range a clarifying (around sentence: 1800 m, 1,400 m a.s.l.. The sites were chosen in mature forest, near in this case), because of the background and the regional use, most people is familiarized with the mid-Calima area River: 1) Río Chancos (RC) lower elevation, 300 to 400 m starting at the power dam (1400 m) running through Río a.s.l.,the confluences 3°57’30.681” of N,three 76°43’56.700” river tributaries W, 2) Ríoof theAzul Calima (RA), Chancos area (300 m), which corresponds to the surveyed piedmont, 600-700 m a.s.l., 3°55’57.484” N, 76°40’32.182” area for this work. Additionally, the portions of the mid W and 3) Río Bravo (RB), lower montane, 1,300-1,400 m Calima between 800 – 1,200 m a.s.l. has been recognized a.s.l., 3°53’11.346” N, 76°35’24.606” W. as an Important Bird Area (Birdlife International 2006), and part of the forest block above 2,200 m a.s.l. has been Analysis included into the El Duende Regional Reserve highlighting We used the bat species list for the Calima River Basin the ecological importance of the region. Some portions of reported by Muñoz-Saba and Alberico (2004) to compare the Basin had been transformed by multiple agricultural uses and logging between 0-200 m a.s.l. and 1400-2,200 m a.s.l.. This spatial context makes the Basin a pin point fromwith ourspecimens field data; deposited this is the in onlynational bat list and from international the Chocó scenario to explore the diversity patterns into the region. collections.Biogeográfico We with updated records the from taxonomy the Calima following Basin Simmons obtained We analyzed two data sets to gain insight into the (2005), Velazco (2005), McCarthy et al. (2006), Mantilla- diversity patterns of bat assemblages: a checklist compiled Meluk et al. (2009), Oprea et al. (2009), Velazco and Figure 1. Calima River Basin and sampling sites. Covertures shape from IDEAM et al. (2007). Check List | Volume 7 | Issue 2 | 2011 167 Saavedra-Rodríguez and Rojas-Díaz | Chiroptera, mid-Calima River Basin, Colombia Gardner (2009), and Velazco et al. (2010). Although we reviewed recent species designations (i.e. Mantilla-Meluk and Baker (2006), Oprea et al. (2009), Velazco and Gardner (2009)) captures because more than 90% of the individuals were we decided to keep the field identification of our Januaryreleased 1997 alive coveringin field. a consecutive rainy and dry season (FigureThe 2).fieldwork We did wasnot sampledeveloped in August from andApril November 1996 to 1996. During the sampling periods, the three sampling sites (RC, RA and RB) were visited eight times (once a month, four days per site). We used ten mist nets (12 m long and 36-mm mesh) set at ground level following standardized Figure 2. Rainfall average from 1988-1991 at the mid-Calima, Colombia.
Recommended publications
  • Check List the Journal Of
    11 3 1644 the journal of biodiversity data April 2015 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 11(3): 1644, April 2015 doi: http://dx.doi.org/10.15560/11.3.1644 ISSN 1809-127X © 2015 Check List and Authors New records of phyllostomid bats for the state of Mato Grosso and for the Cerrado of Midwestern Brazil (Mammalia: Chiroptera) Nathália Siqueira Veríssimo Louzada1*, Anne Caruliny do Monte Lima2, Leila Maria Pessôa3, José Luis Passos Cordeiro4 and Luiz Flamarion Barbosa Oliveira5 1 Universidade Federal do Rio de Janeiro, Instituto de Biologia, Centro de Ciências da Saúde. Ilha do Fundão, CEP 21941590, Rio de Janeiro, RJ, Brazil 2 Museu Nacional/UFRJ, Departamento de Vertebrados, Mastozoologia. São Cristóvão, CEP 20940040, Rio de Janeiro, RJ, Brazil 3 Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Centro de Ciências da Saúde. Ilha do Fundão, CEP 21941590, Rio de Janeiro, RJ, Brazil 4 Fundação Oswaldo Cruz, Fiocruz Mata Atlântica. Curicica, CEP 22713375, Rio de Janeiro, RJ, Brazil 5 Museu Nacional/UFRJ, Departamento de Vertebrados, Mastozoologia. São Cristóvão, CEP 20940040, Rio de Janeiro, RJ, Brazil * Corresponding author. E-mail: [email protected] Abstract: We report new records of eight species of of endemic species (Ratter et al. 1997; Castelletti et al. phyllostomid bats for the state of Mato Grosso. Two 2003; Costa et al. 2005; MMA 2011). These biomes are of them, Micronycteris microtis and Platyrrhinus bra­ the least known, with 7% of the Caatinga and 6% of the chycephalus, also represent new records for the Cerrado Cerrado sampled for bats; but all Brazilian biomes are biome.
    [Show full text]
  • BATS of the Golfo Dulce Region, Costa Rica
    MURCIÉLAGOS de la región del Golfo Dulce, Puntarenas, Costa Rica BATS of the Golfo Dulce Region, Costa Rica 1 Elène Haave-Audet1,2, Gloriana Chaverri3,4, Doris Audet2, Manuel Sánchez1, Andrew Whitworth1 1Osa Conservation, 2University of Alberta, 3Universidad de Costa Rica, 4Smithsonian Tropical Research Institute Photos: Doris Audet (DA), Joxerra Aihartza (JA), Gloriana Chaverri (GC), Sébastien Puechmaille (SP), Manuel Sánchez (MS). Map: Hellen Solís, Universidad de Costa Rica © Elène Haave-Audet [[email protected]] and other authors. Thanks to: Osa Conservation and the Bobolink Foundation. [fieldguides.fieldmuseum.org] [1209] version 1 11/2019 The Golfo Dulce region is comprised of old and secondary growth seasonally wet tropical forest. This guide includes representative species from all families encountered in the lowlands (< 400 masl), where ca. 75 species possibly occur. Species checklist for the region was compiled based on bat captures by the authors and from: Lista y distribución de murciélagos de Costa Rica. Rodríguez & Wilson (1999); The mammals of Central America and Southeast Mexico. Reid (2012). Taxonomy according to Simmons (2005). La región del Golfo Dulce está compuesta de bosque estacionalmente húmedo primario y secundario. Esta guía incluye especies representativas de las familias presentes en las tierras bajas de la región (< de 400 m.s.n.m), donde se puede encontrar c. 75 especies. La lista de especies fue preparada con base en capturas de los autores y desde: Lista y distribución de murciélagos de Costa Rica. Rodríguez
    [Show full text]
  • A New Species of Lonchophylla Thomas (Chiroptera: Phyllostomidae) from Ecuador
    29 June 2005 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 118(2):442-449. 2005. A new species of Lonchophylla Thomas (Chiroptera: Phyllostomidae) from Ecuador Luis Albuja V. and Alfred L. Gardner (LAV) Departamento de Ciencias Biologicas, Escuela Politecnica Nacional, Apartado 17-01-2759, Quito, Ecuador, e-mail: [email protected]; (ALG) USGS Patuxent Wildlife Research Center, P.O. Box 37012, National Museum of Natural History, MRC-111, Washington, D.C. 20013-7012, U.S.A., e-mail: [email protected] Abstract.•We describe Lonchophylla orcesi, sp. nov., from the Choco, a region of high biotic diversity, endemism, and rainfall along the western An- dean slopes and Pacific lowlands of Colombia and Ecuador. One of the largest known Lonchophylla, it occurs sympatrically with at least two other species of Lonchophylla including the similar, but somewhat smaller L. robusta. We also recognize L. concava as a Middle American Province species distinct from L. mordax of Brazil and Bolivia on the basis of cranial and dental features. From 1984 to 1988, personnel represent- below); 7 L. thomasi J. A. Allen, 1904; 3 ing the Department of Biological Sciences L. chocoana Davalos, 2004; and 1 speci- of the Escuela Politecnica Nacional (EPN), men of a species unlike any previously rec- Quito, Ecuador, conducted studies and ognized in Lonchophylla. Several reports made collections of mammals in the humid on additions to the known fauna, descrip- tropical forests of northwestern Ecuador. tions of new species, and the status of con- These forests are the southern terminus of servation in the region, have been published the rain forests of the western Andean or are under preparation (e.g., Albuja & slopes and adjacent Pacific lowlands of Mena 1989, Albuja 1999).
    [Show full text]
  • Diversity of Bat Species Across Dominica
    Diversity of Bat Species across Dominica Brittany Moore, Hannah Rice, Meredith Stroud Texas A&M University Tropical Field Biology Dominica 2015 Dr. Thomas Lacher Dr. Jim Woolley Abstract: Twelve species of bats can be found on the island of Dominica, however there are still some species that have not been thoroughly catalogued. Our report is based on further findings regarding Artibeus jamaicensis, Sturnira lilium, Ardops nichollsi, Myotis dominicensis, Monophyllus plethodon and Brachyphylla cavernarum. We collected mass, forearm length, hind foot length, ear length, sex, and reproductive condition for every individual bat and then compared this information among species to observe morphological differences. We also added new data to past studies on wing loading and aspect ratios for the species we caught. We found a statistical significance among species in body size measure and wing morphology. Among the bats examined, the measurements can be used in order to positively identify species. Introduction: Dominica, also known as the Nature Island, is home to a great diversity of plants and animals. There are many various habitats ranging from dry forest to montane and elfin rainforest. Within each habitat, one may find species only endemic to that area. Animal activity at night in Dominica is quite different than what can be witnessed during the day. As nighttime falls, the call of the tink frog can be heard all over the island, and the mating click beetles will illuminate even the darkest of forests, but by far the most exciting nocturnal animals are the thousands of bats that come alive when the sun begins to set.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Ecosystem Services Provided by Bats
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Ecology and Conservation Biology Ecosystem services provided by bats Thomas H. Kunz,1 Elizabeth Braun de Torrez,1 Dana Bauer,2 Tatyana Lobova,3 and Theodore H. Fleming4 1Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, Massachusetts. 2Department of Geography, Boston University, Boston, Massachusetts. 3Department of Biology, Old Dominion University, Norfolk, Virginia. 4Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona Address for correspondence: Thomas H. Kunz, Ph.D., Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215. [email protected] Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services.
    [Show full text]
  • BRAZIL Rio Aripuaña Mammal Expedition Oct 3Rd – Oct 16Th 2019
    BRAZIL Rio Aripuaña Mammal Expedition rd th Oct 3 – Oct 16 2019 Stefan Lithner White-and-gold Marmoset Photo Stefan © Lithner This trip Was arranged by Fieldguides Birding Tours www.fieldguides.com as a mammal tour with special focus on Dwarf Manatee, bats and primates, but birds encountered were also noticed. A Fieldgjuides trip-report is available on https://fieldguides.com/triplistsSUBMIT/grm19p.html. Trip conductors were Micah Riegner with special support by Jon Hall USA, Fiona Reid, Canada, and Marcello Brazil for Bats Participants: Cherryl Antonucci USA, Jon Hall USA, Patrick Hall USA, Morten Joergensen Denmark, Stefan Lithner, Sweden, Keith Millar U.K., Fiona Reid, Canada, Mike Richardson U.K,. Micah Riegner USA, Martin Royle U.K., Lynda Sharpe Australia, Mozomi Takeyabu Denmark and Sarah Winch U. K. Itinerary in short In Manaus; MUSA-tower and Tropical Hotel. Fast boat from Manaus to Novo Aripuaña; Rio Aripuaña (Oct 4th– Oct 9 th). From Novo Aripuaña up stream Rio Aripuaña and then downstream, passing and/or making shorter expeditions; Novo Olinda, Prainha, Boca do Juma, area around Novo Olinda 1 Rio Madeira (Oct 10 th – Oct 13th), passing and/or making shorter expeditions Matamata, Igarape Lucy. Then onto Rio Amazonas (Oct 14 th – Oct 16 th) where we stopped at Miracaueira, Ilha Grande, on Rio Negro; Ariau and back to Manaus. Brief indication of areas we visited. The trip officially started by dinner in Manaus in the evening of Oct 3rd, but for people present in Manaus prior to that were offered to visit the MUSA-tower about 20 minutes ride by taxi from the hotel and Tropic Hotel, Manaus even closer.
    [Show full text]
  • Bats of the Tropical Lowlands of Western Ecuador
    Special Publications Museum of Texas Tech University Number 57 25 May 2010 Bats of the Tropical Lowlands of Western Ecuador Juan P. Carrera, Sergio Solari, Peter A. Larsen, Diego F. Alvarado, Adam D. Brown, Carlos Carrión B., J. Sebastián Tello, and Robert J. Baker Editorial comment. One extension of this collaborative project included the training of local students who should be able to continue with this collaboration and other projects involving Ecuadorian mammals. Ecuador- ian students who have received or are currently pursuing graduate degrees subsequent to the Sowell Expeditions include: Juan Pablo Carrera (completed M.A. degree in Museum Science at Texas Tech University (TTU) in 2007; currently pursuing a Ph.D. with Jorge Salazar-Bravo at TTU); Tamara Enríquez (completed M.A. degree in Museum Science at TTU in 2007, Robert J. Baker (RJB), major advisor); René M. Fonseca (received a post- humous M.S. degree from TTU in 2004, directed by RJB); Raquel Marchán-Rivandeneira (M.S. degree in 2008 under the supervision of RJB; currently pursuing a Ph.D. at TTU directed by Richard Strauss and RJB); Miguel Pinto (M.S. degree at TTU in 2009; currently pursuing a Ph.D. at the Department of Mammalogy and Sackler Institute for Comparative Genomics at the American Museum of Natural History, City University of New York); Juan Sebastián Tello (completed a Licenciatura at Pontificia Universidad Católica del Ecuador (PUCE) in 2005 with Santiago Burneo; currently pursuing a Ph.D. at Louisiana State University directed by Richard Stevens); Diego F. Alvarado (pursuing a Ph.D. at University of Michigan with L.
    [Show full text]
  • Bioacoustical Characterization of Phyllostomidae Bats in Colombian Low Montane Rain Forest
    Rev. Biodivers. Neotrop. ISSN 2027-8918 e-ISSN 2256-5426 Abril-Junio 2017; 7 (2): 119-33 119 DOI: http://dx.doi.org/10.18636/bioneotropical.v7i2.600 Bioacoustical characterization of Phyllostomidae bats in Colombian low montane rain forest Caracterización bioacústica de murciélagos Filostómidos en un bosque húmedo montano bajo colombiano Paula Catalina Pinilla-Cortés1, Abelardo Rodríguez-Bolaños2 Abstract The emission of ultrasound allows bats make decisive tasks associated with the interpretation of their su- rroundings, displacement, orientation and obtaining food. In the case of Phyllostomidae bats, the emissions show high frequencies and low intensities, similarly they complement largely by the sense of smell and in a less proportion, by sight. Objective: This study presents the characterization of bioacoustics emissions for seven species: Artibeus jamaicensis (Leach, 1821) Carollia brevicauda (Schinz, 1821), Carollia pers- picillata (Linnaeus, 1758), Phyllostomus hastatus (Pallas, 1767), Phyllostomus discolor (Wagner, 1843) Sturnira luisi (Davis, 1980), Sturnira lilium (E.Geoffroy, 1810). Methodology: The acoustic records have been reported in a humid forest in San Francisco,Cundinamarca, Colombia, using the autonomous recorder Song Meter SM2 Bat (Wild Life Acoustics). The emissions were obtained applying closed recording booth space flight method and after, they were visualized using Sonobat 2.9.4 Software.Results: Spectrograms were obtained and a consensus among the spectral values recorded by each specie, with the mean and the standard deviation, then some values are contrasted. Conclusion: Recognition of modulated structures, numerous harmonics and high frequencies. Likewise, after making contrast of spectral values, which are mainly referred to the high or initial frequency (Hif), low or initial frequency (Lof) and duration (ms), with different authors, it study recognizes the need to expand studies that take into account characteristics of Phyllostomidae individuals in field or under controlled conditions.
    [Show full text]
  • Echolocation Calls and Wing Morphology of Bats from the West Indies
    Acta Chiropterologica, 6(1): 75–90, 2004 PL ISSN 1508–1109 © Museum and Institute of Zoology PAS Echolocation calls and wing morphology of bats from the West Indies NANCY VAUGHAN JENNINGS1, STUART PARSONS2, KATE E. BARLOW3, and MICHAEL R. GANNON4 1School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom E-mail: [email protected] 2School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand 32 The Paddock, Seton Mains, Longniddry, East Lothian, EH32 0PG, United Kingdom Previous address: School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom 4Department of Biology, The Pennsylvania State University, Altoona College, 3000 Ivyside Park Altoona, PA 16601-3760, USA Echolocation calls of 119 bats belonging to 12 species in three families from Antillean islands of Puerto Rico, Dominica, and St. Vincent were recorded by using time-expansion methods. Spectrograms of calls and descriptive statistics of five temporal and frequency variables measured from calls are presented. The echolocation calls of many of these species, particularly those in the family Phyllostomidae, have not been described previously. The wing morphology of each taxon is described and related to the structure of its echolocation calls and its foraging ecology. Of slow aerial-hawking insectivores, the Mormoopidae and Natalidae Mormoops blainvillii, Pteronotus davyi davyi, P. quadridens fuliginosus, and Natalus stramineus stramineus can forage with great manoeuvrability in background-cluttered space (close to vegetation), and are able to hover. Pteronotus parnellii portoricensis is able to fly and echolocate in highly-cluttered space (dense vegetation). Among frugivores, nectarivores and omnivores in the family Phyllostomidae, Brachyphylla cavernarum intermedia is adapted to foraging in the edges of vegetation in background-cluttered space, while Erophylla bombifrons bombifrons, Glossophaga longirostris rostrata, Artibeus jamaicensis jamaicensis, A.
    [Show full text]
  • Collpas As Activity Hotspots for Frugivorous Bats (Stenodermatinae) in the Peruvian Amazon: Underlying Mechanisms and Conservation Implications
    COLLPAS AS ACTIVITY HOTSPOTS FOR FRUGIVOROUS BATS (STENODERMATINAE) IN THE PERUVIAN AMAZON: UNDERLYING MECHANISMS AND CONSERVATION IMPLICATIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Biological Sciences by Adriana Bravo Ordoñez B. S. Universidad Nacional Agraria La Molina 1998 August, 2009 To my parents, Miguel and Zenaida, who have always supported me as well as encouraged me to follow my dreams and to pursue what may look impossible. In memory of Pablo Barbadillo (1985-2008). He was a friend, a colleague, and an inspiration for many of us to fight for the conservation of our Amazonian forests. ii ACKNOWLEDGMENTS First, I want to extend all my gratitude to my academic adviser, Dr. Kyle E. Harms. After meeting Dr. Harms in Manu, Peru, in 2000, I knew he would be an extraordinary adviser. I was absolutely right. He has helped me since my first visit to Louisiana State University (LSU) in 2002 as a prospective student, and through my whole journey as a graduate student in the Department of Biological Sciences. Since the very beginning of my doctoral studies, Dr. Harms has provided critical advise for the development of my dissertation. He has always been available when I needed help, even when he or I was thousands of kilometers away from Baton Rouge. I have no words to express my gratitude for everything he did for me to accomplish all my goals during my graduate career.
    [Show full text]
  • Beginning the Quest: Phylogenetic Hypothesis and Identification of Evolutionary Lineages in Bats of the Genus Micronycteris (Chiroptera, Phyllostomidae)
    ZooKeys 1028: 135–159 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1028.60955 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Beginning the quest: phylogenetic hypothesis and identification of evolutionary lineages in bats of the genus Micronycteris (Chiroptera, Phyllostomidae) Darwin M. Morales-Martínez1,2, Hugo F. López-Arévalo2, Mario Vargas-Ramírez1,3 1 Grupo de Biodiversidad y Conservación Genética, Instituto de Genética, Universidad Nacional de Colombia, Universidad Nacional de Colombia, Carrera 45 No 26-85, Bogotá, Colombia 2 Grupo en Conservación y Manejo de Vida Silvestre, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 45 No 26-85, Bogotá, Colombia 3 Estación de Biología Tropical Roberto Franco, Universidad Nacional de Colombia. Carrera 33 #33-76, Barrio El Porvenir, Villavicencio, Meta, Colombia Corresponding author: Darwin M. Morales-Martínez ([email protected]) Academic editor: DeeAnn Reeder | Received 20 November 2020 | Accepted 4 March 2021 | Published 6 April 2021 http://zoobank.org/A2E56F35-FAC4-4925-9F53-F58725894589 Citation: Morales-Martínez DM, López-Arévalo HF, Vargas-Ramírez M (2021) Beginning the quest: phylogenetic hypothesis and identification of evolutionary lineages in bats of the genus Micronycteris (Chiroptera, Phyllostomidae). ZooKeys 1028: 135–159. https://doi.org/10.3897/zookeys.1028.60955 Abstract Thirteen species of Neotropical bats of the genus Micronycteris are currently recognized and are allocated to four subgenera Leuconycteris, Micronycteris, Schizonycteris, and Xenonectes. Despite that, the presence of polyphyletic clades in molecular phylogenies suggests that its diversity is underestimated. Addition- ally, the incorrect identification of some genetic sequences, the incorrect assignation of available valid names, and restricted geographic sampling have biased the identification of independently evolutionary lineages within Micronycteris.
    [Show full text]