Bedrock Geologic Map of New River Gorge National River

Total Page:16

File Type:pdf, Size:1020Kb

Bedrock Geologic Map of New River Gorge National River National Park Service U.S. Department of the Interior Bedrock Geologic Map of New River@ Gorge National River @ @ @ @ @ @ @ @ Geologic Resources Inventory @ @ West Virginia @ @ @ @ Natural Resource Stewardship and Science @ @ @ @ @ @ @ @ M @ @ @ PNnrlrl @ @ @ @ PNnr PNnrln PNnrural @ @ PNnrlral @ @ @ @ PNnrural PNnrlral @ Sheet 2: Southern Extent PNnr @ PNnrln PNnr PNp PNnrfck @ @ @ @ @ @ @ Mpn @ @ F PNnrlral @ PNnrural PNnrfck @ PNnr PNnrbck PNnrfck @ @ @ @ @ @ @ @ @ @ @ @ @ Mhu @ @ PNnrlrl Mbs 41 @ PNnrfck @ @ @ @ @ @ @ @ @ @ PNnrlral PNnrlrl@ @ @ @ NPS Boundary See Sheet 1 for Location Map Mann PNnrfck @ @ PNnrsew @ @ @ @ PNnrbck @ Mountain anticline PNnrlral PNppc6 @ @@ @ PNppc3 @@ @ @ PNnrbck PNnr Mbs @ C PNnr @ Mbs @@ @ PNnrfck @ @@ @@ @ @@ PNp @ @ PNnrfck 20 @@ @ PNppc3 @@ @ @ PNnr @ 31 @@ PNnr @ @ PNppc3 @@ PNnrlrl Grandview @ PNnrbck @@ Infrastructure Army Camp PNp PNnrp Sandbar PNnrlrl PNppc6 PNnrbck PNp Mbs Point of interest PNnrfck @ PNnr Mhu PNppc3 PNnrural PNppc3 Terry Prince PNppc6 @@ Cities Mhu PNnrfck Meadow @@ PNppc6 PNp @@ Mhu Quinnimont @ Roads Mhu @ PNppc3 PNnrp Bridge PNnrp PNnrfck 41 Ranger station PNnrlrl PNnrfck PNppc6 Quinnimont Mpn @@ PNnr @@ Mbs @@ Rapids PNp @@ Picnic area @@ @@ McCreery @@ @@ PNp Mpn War Ridge Public river access @@ @@ PNnrfck @@ PNnrlrl PNp @@ @@ @@ PNnr PNppc6 PNppc3 PNnr Mpn Campground PNnrlrl Grassy Shoals Mhu 7 Mhu Geologic Cross Section Lines PNnr Grandview Rapids Mhlsg PNppc6 PNnrp 20 Mhl PNp Mhu Mbs PNppc3 Mpn Mbs C C’ Overlook New River Mhl PNp PNp Mbs Mbs Mbs Mhu Folds PNppc3 ( Glade Creek Mhu Anticline, known or certain PNnrlrl @@ F @@ @@ Mhu M ( Syncline, known or certain PNnr Mhu PNp PNnrbck Mhl PNnrp Linear Geologic Units: Solid where certain, long dashed where approximate, PNnrfck Meadow short dashes where inferred, “?” where queried PNnrlral PNnrlrl PNnrlral Creek Kanawha Formation PNppc6 Mbs Mhl PNp Mhu PNnrp PNkstk - Stockton Coal Bed (Middle Pennsylvanian) Mhu 20 PNkcbg - Coalburg Coal Bed (Middle Pennsylvanian) Mhl 4 PNknp - Peerless and No. 2 Coal Beds, undivided (Middle Pennsylvanian) PNppc6 Meadow 64 PNkprl - Peerless Coal Bed (Middle Pennsylvanian) PNppc3 Mhu Mpn PNnrural PNkn2g - No. 2 Gas Coal Bed (Middle Pennsylvanian) PNnrural PNp Creek Mhu Mhlsg Mhu PNkeag - Eagle Coal Bed (Middle Pennsylvanian) @ PNnrhuf - Hughes Ferry Coal Bed (Lower Pennsylvanian) PNp Sandstone Mbs Visitor Center Mhl New River Formation PNnrp PNppc3 Mhl @ PNnrsew - Sewell Coal Bed (Lower Pennsylvanian) Mhu @ PNnrlrl - Little Raleigh Coal Bed (Lower Pennsylvanian) PNnr Mhsg Mbf @ PNnrbck - Beckley Coal Bed (Lower Pennsylvanian) PNnrlrl PNnrfck - Fire Creek Coal Bed (Lower Pennsylvanian) PNnrural Sandstone Mhlsg PNppc6 PNp Pocahontas Formation 64 Mhu Mhu @ PNppc6 - Pocahontas No. 6 Coal Bed (Lower Pennsylvanian) PNnr 64 @ PNppc3 - Pocahontas No. 3 Coal Bed (Lower Pennsylvanian) 307 PNnrfck @ 27 Mbs @ Mhlsg @ Sandstone Falls PNnrlrl Mpn Mbs Bedrock Geologic Contacts Mhl PNnrfck Known or certain PNnr PNnrfck PNppc6 @ Mhl PNnr PNnrfck @ Mhu Approximate @ Overlook C’ PNnrp PNppc3 Mbs PNp Inferred 20 Mhl Mbs @@ Inferred and queried North 0 2 Mhu PNp Quadrangle boundary Kilometers Mhu ( Miles Overlook Mhu Water 0 2 PNp Mbs D Water Mbs Mhl M Rapids Mbf Camp Brookside Dam PNppc3 PNppc3 7 Brooks PNp Bedrock Geologic Units PNnrp Mhu Mhsg PNppc6 Brooks Falls PNa Allegheny Formation (Middle Pennsylvanian) PNp PNppc6 Mhu Mbs Mbs PNk Kanawha Formation, undifferentiated (Middle Pennsylvanian) 7 Mhlsg Mhu PNnr New River Formation, undifferentiated (Lower Pennsylvanian) 9 Mhl Tug Creek Richmond PNnrun New River Formation, Upper Nuttall Sandstone (Lower Pennsylvanian) Hamilton Farm Mhu Mhu PNnrln New River Formation, Lower Nuttall Sandstone (Lower Pennsylvanian) Mpn PNppc3 F Mbs Akers Mhu Mhu PNnrural New River Formation, Upper Raleigh Sandstone (Lower Pennsylvanian) 11 PNnrlral New River Formation, Lower Raleigh Sandstone (Lower Pennsylvanian) Mhl New River Mpn Hinton Mhu 9 PNnrp New River Formation, Pineville Sandstone (Lower Pennsylvanian) Mhl PNp Pocahontas Formation, undifferentiated (Lower Pennsylvanian) Boggs Knob anticline Springdale syncline Mbf Mbf Mhu Mhu 107 Greenbriar River Mbs Bluestone Formation, undifferentiated (Mississippian) 3 3 Mhlsg Mpn Princeton Formation, undifferentiated (Mississippian) Mhsg 3 Diamond Point Sunrise. NPS Photograph. Bellepoint Mhl Mbf Mhu Hinton Formation, Upper Hinton member (Mississippian) D’ Mpn 20 Mhlsg This map displays geologic map data compiled by the National Park Service Geologic Resources Inventory. Mhlsg Mhu Mhlsg Hinton Formation, Little Stone Gap Member, Avis Limestone, (Mississippian) It is not a substitute for site-specific investigations. Bluestone Dam Mhlsg Source Map Poster Layout Mhu Mhl Mhl Hinton Formation, Lower Hinton member (Mississippian) McColloch, G.H., P.J Hun, J.S. McColloch, R.L. Peck, B.M. Blake Jr., Dalton Meyer and Georgia Hybels Mhl D.L. Matchen, and S.E. Gooding. 2013. Bedrock geology of the (Colorado State University) 12 Mbf New River Gorge National River, West Virginia (scale 1:24,000). Poster Date Mhl Mhlsg Mhu Mhsg Hinton Formation, Stony Gap Sandstone Member (Mississippian) Geologic Quadrangle Maps of West Virginia. Open File Map September 2017 OF-1301, 4 map sheets. West Virginia Geological and Economic GRI Data Date Bluefield Formation, undifferentiated (Mississippian) Survey, Morgantown, West Virginia. May 2016 Mbf Source Scale 1:24,000 Source Map Date According to US National Map accuracy standards, features are 2013 within 12 m (40 ft) of their true location. All Geologic Resources Inventory geologic map data and publications are available at http://go.nps.gov/gripubs. .
Recommended publications
  • Mine Pool Atlas
    West Virginia Geological Survey West Virginia Mine Pool Atlas WEST VIRGINIA West Virginia Mine Pool Atlas Final Project Report for the project period January 1, 2010 through December 31, 2011 Submitted to: West Virginia Department of Environmental Protection 601 57th Street SE Charleston, WV 25304 Submitted by: West Virginia Geological and Economic Survey 1 Mont Chateau Road Morgantown, WV 26508-8079 Principal Investigator Jane S. McColloch, Senior Geologist Co-Investigators Richard D. Binns, Jr., GIS Database Administrator Bascombe M. Blake, Jr., Manager, Coal Programs Michael T. Clifford, GIS Analyst Sarah E. Gooding, Geologist and GIS Cartographer May 2012 Inter-Agency Agreement Number 036 1 ACKNOWLEDGMENTS This study was greatly facilitated by the ongoing work of the Coal Bed Mapping Program (CBMP) staff. In addition, several individuals provided information, technical expertise, and technical support during the course of the project. Notable among these: • William C. Borth, West Virginia Department of Environmental Protection • A. Nick Schaer, West Virginia Department of Environmental Protection • William J. Toomey, West Virginia Bureau for Public Health • Mary C. Behling, West Virginia Geological and Economic Survey • Gayle H. McColloch, West Virginia Geological and Economic Survey • Edward I. Loud, West Virginia Geological and Economic Survey • Betty L. Schleger, West Virginia Geological and Economic Survey • Susan E. Pool, West Virginia Geological and Economic Survey • Samantha J. McCreery, West Virginia Geological and Economic Survey i ABSTRACT The West Virginia Mine Pool Atlas project was a two-year study by the West Virginia Geological and Economic Survey (WVGES) to evaluate abandoned coal mines as potential groundwater sources. This study was funded by the West Virginia Department of Environmental Protection (WVDEP).
    [Show full text]
  • New River Geology
    Wow! Did You Know... National Park Service Total length of the New River: 320 miles • U.S. Department of the Interior • Total size of the New River watershed: 6,965 square miles (encompasses 4,457,000 acres) New River Gorge National River • Number of dams on the New River: seven (Fields Dam in Mouth of Wilson, VA; Fries Mill Dam in Fries, VA; Byllesby Dam in Austinville, VA; Buck Dam in Carroll County, VA; Claytor Dam in Dublin, VA; Bluestone Dam in New River Geology: Hinton, WV; and Hawk’s Nest Dam in Ansted, WV) • Highest point: Snake Mountain, North Carolina at Ribbon Through Time 4,800 feet above sea level (south fork of the New River) • Lowest point: Gauley Bridge, West Virginia at 680 feet above sea level. At this point the New and Gauley Rivers join together to form the Kanawha River. • Length of New River in New River Gorge National River: 53 miles, established as a unit of the National Park Service in 1978 (encompasses over 70,000 acres) • American Heritage River: the entire New River received this national designation in 1998 • The New River drops 750 feet between Hinton and Gauley Bridge, West Virginia (around 11 feet per mile) • One of the widest sections of the river in New River Gorge National River: Sandstone Falls area, 1500 feet Stand at any overlook in the New River Gorge and • One of the narrowest sections of the river in New River look into the canyon. These panoramas of the gorge Gorge National River: Fayette Station rapid, 200 feet are where it best presents itself, where it reveals the • One of the deepest sections of the river in New River character of its natural sculpture and landscape.
    [Show full text]
  • Chapter 1: Sequence Stratigraphy of the Glenshaw Formation
    Martino, R. L., 2004, Sequence stratigraphy of the Glenshaw Formation (middle–late Pennsylvanian) in the central Appalachian basin, in J. C. Pashin and R. A. Gastaldo, eds., Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata: AAPG Studies 1 in Geology 51, p. 1–28. Sequence Stratigraphy of the Glenshaw Formation (Middle–Late Pennsylvanian) in the Central Appalachian Basin Ronald L. Martino Department of Geology, Marshall University, Huntington, West Virginia, U.S.A. ABSTRACT he Glenshaw Formation consists predominantly of sandstones and mud- rocks with thin limestones and coals, which are thought to have accumu- T lated in alluvial, deltaic, and shallow-marine environments. Analysis of 87 Glenshaw outcrops from southern Ohio, eastern Kentucky, and southern West Vir- ginia has revealed widespread, well-developed paleosols. These paleosols are used, along with marine units and erosional disconformities, to develop a high-resolution sequence-statigraphic framework. The tops of the paleosols constitute boundaries for nine allocycles, which are interpreted as fifth-order depositional sequences. Allocycles in this framework correlate with similar allocycles described from the northern Appalachian basin. A sequence-stratigraphic model is proposed that provides a framework for in- terpreting facies architecture in terms of base-level dynamics linked to relative sea level changes. Lowered base level caused valley incision along drainage lines and sediment bypassing of interfluves, which led to development of well-drained paleo- sols. Rising base level produced valley filling by fluvioestuarine systems (lowstand systems tract/transgressive systems tract), whereas pedogenesis continued on inter- fluves. As drainage systems aggraded, the coastal plain water table rose, and in- terfluvial paleosols were onlapped by paludal and lacustrine deposits.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • Carboniferous Coal-Bed Gas Total Petroleum System
    U.S. Geological Survey Open-File Report 2004-1272 Assessment of Appalachian Basin Oil and Gas Resources: Carboniferous Coal-bed Gas Total Petroleum System Robert C. Milici U.S. Geological Survey 956 National Center Reston, VA 20192 1 Table of Contents Abstract Introduction East Dunkard and West Dunkard Assessment units Introduction: Stratigraphy: Pottsville Formation Allegheny Group Conemaugh Group Monongahela Group Geologic Structure: Coalbed Methane Fields and Pools: Assessment Data: Coal as a source rock for CBM: Gas-In-Place Data Thermal Maturity Generation and Migration Coal as a reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Pocahontas basin and Central Appalachian Shelf Assessment Units Introduction: Stratigraphy: Pocahontas Formation New River Formation Kanawha Formation 2 Lee Formation Norton Formation Gladeville Sandstone Wise Formation Harlan Formation Breathitt Formation Geologic Structure: Coalbed Methane Fields: Coal as a Source Rock for CBM Gas-in-Place Data Thermal Maturity Generation and Migration Coal as a Reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Assessment Results: Appalachian Anthracite and Semi-Anthracite Assessment Unit: Pennsylvania Anthracite Introduction: Stratigraphy: Pottsville Formation Llewellyn Formation Geologic Structure: Coal as a Source Rock for CBM: Gas-In-Place-Data Thermal
    [Show full text]
  • Geologic Resources Inventory Map Document for Bluestone National Scenic River
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Bluestone National Scenic River GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Bluestone National Scenic River blue_geology.pdf Version: 7/21/2015 I Bluestone National Scenic River Geologic Resources Inventory Map Document for Bluestone National Scenic River Table of Contents Geologi.c.. .R..e..s..o..u..r.c..e..s. .I.n..v..e..n..t.o..r.y.. .M...a..p.. .D..o..c..u..m...e..n..t....................................................................... 1 About th..e.. .N..P...S.. .G..e..o..l.o..g..i.c.. .R..e..s..o..u..r.c..e..s. .I.n..v..e..n..t.o..r.y.. .P..r..o..g..r.a..m........................................................... 2 GRI Dig.i.t.a..l. .M...a..p..s. .a..n..d.. .S..o..u..r..c.e.. .M...a..p.. .C..i.t.a..t.i.o..n..s............................................................................ 4 Digital B..e..d..r..o..c.k.. .G...e..o..l.o..g..i.c. .M...a..p.. .o..f. .B..l.u..e..s..t.o..n..e.. .N..a..t.i.o..n..a..l. .S..c..e..n..i.c.. .R..i.v..e..r........................................ 5 Bedroc.k.. .M...a..p.. .U..n..i.t. .L..is..t................................................................................................................................................... 5 Bedroc.k.. .M...a..p.. .U..n..i.t. .D..e..s..c..r.i.p..t.i.o..n..s..................................................................................................................................... 5 PNnr -.. .N..e..w..
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • Italic Page Numbers Indicate Major References]
    Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67.
    [Show full text]
  • Unusual Preservation of the Trace Fossil Conostichus in Middle Silurian Carbonate Facies of Indiana, USA
    Canadian Journal of Earth Sciences Unusual preservation of the trace fossil Conostichus in middle Silurian carbonate facies of Indiana, USA Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0198.R1 Manuscript Type: Article Date Submitted by the Author: 14-Mar-2016 Complete List of Authors: Thomka, James R.; University of Akron, Geosciences Bantel, Thomas E.; Dry Dredgers Tomin, MarissaDraft J.; University of Akron, Geosciences Keyword: ichnology, Wenlock, trace fossil taphonomy, <i>Conostichus</i> https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 23 Canadian Journal of Earth Sciences 1 Unusual preservation of the trace fossil Conostichus in middle Silurian carbonate facies of 2 Indiana, USA 3 4 James R. Thomka 1* , Thomas E. Bantel 2, and Marissa J. Tomin 1 5 6 1Department of Geosciences, University of Akron, Akron, Ohio 44325, USA; 7 [email protected], [email protected] 8 9 2Dry Dredgers, P.O. Box 210013, Cincinnati, Ohio 45221, USA; [email protected] 10 11 *Corresponding author (J. R. Thomka)Draft 12 Department of Geosciences 13 114 Crouse Hall 14 University of Akron 15 Akron, Ohio 44325, USA 16 E-mail: [email protected] 17 Telephone: +1-630-935-2983 18 Fax: 330-972-7611 19 20 21 22 23 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 23 24 Unusual preservation of the trace fossil Conostichus in middle Silurian carbonate facies of 25 Indiana, USA 26 27 James R. Thomka, Thomas E. Bantel, and Marissa J. Tomin 28 29 Abstract: The long-ranging, plug-shaped ichnofossil Conostichus , attributed to solitary 30 polypoid cnidarians, is most commonly described in the Paleozoic from fine-grained siliciclastic 31 sediments, with few descriptions from carbonate settings.
    [Show full text]
  • Sequence Stratigraphic Hierarchy of the Upper Devonian Foreknobs Formation, Central Appalachian Basin
    Palaeogeography, Palaeoclimatology, Palaeoecology 387 (2013) 104–125 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Sequence stratigraphic hierarchy of the Upper Devonian Foreknobs Formation, central Appalachian Basin, USA: Evidence for transitional greenhouse to icehouse conditions☆ Wilson S. McClung a,⁎, Kenneth A. Eriksson b, Dennis O. Terry Jr. c, Clifford A. Cuffey a a Chevron USA Inc., 15 Smith Rd, Midland, TX 79705, United States b Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, United States c Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122, United States article info abstract Article history: The Foreknobs Formation (Upper Devonian; Upper Frasnian to basal Famennian) comprises the uppermost ma- Received 6 December 2012 rine strata of the progradational “Catskill clastic wedge” of the south-central Appalachian Mountains (Virginia- Received in revised form 7 July 2013 West Virginia; USA). The Foreknobs Formation consists of 14 lithofacies arranged in four facies associations Accepted 18 July 2013 which record the following depositional settings: 1) storm-dominated distal to proximal offshore to shoreface Available online 27 July 2013 (facies association A); 2) sharp-based conglomeratic shoreface (facies association B); 3) fluvial redbed (facies association C); and 4) incised-valley fill (IVF; facies association D). Vertical juxtaposition and stacking patterns Keywords: Late Devonian of lithofacies and facies associations permit recognition of a hierarchy of three scales of cyclicity. Up to 70 Catskill short-term 5th-order cycles, each averaging ~65 kyr, consist of coarsening-upward parasequences of storm- Foreknobs Formation dominated offshore marine facies in the distal setting which correspond to high frequency (unconformity Sequence stratigraphy bound) sequences (HFS) of fluvial redbed strata overlain by offshore marine strata in the proximal setting.
    [Show full text]
  • GSA TODAY • 1998 Section Meetings a Publication of the Geological Society of America Southeastern, P
    Vol. 7, No. 10 October 1997 INSIDE • New Honorary Fellows, p. 15 • Call for Award Nominations, p. 16, 22, 24, 26 GSA TODAY • 1998 Section Meetings A Publication of the Geological Society of America Southeastern, p. 27 Cordilleran, p. 29 Postglacial Ponds and Alluvial Fans: Recorders of Holocene Landscape History Paul Bierman,* Andrea Lini, Paul Zehfuss, Amy Church, Department of Geology, University of Vermont, Burlington, VT 05405 P. Thompson Davis, Department of Natural Sciences, Bentley College, Waltham, MA 02154 John Southon, Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550 Lyn Baldwin, Field Naturalist Program, University of Vermont, Burlington, VT 05405 ABSTRACT northern Vermont as an example, alluvial fan sediments reveal that we demonstrate that the sedimentary the highest rates of hillslope erosion Little is known about rates and record preserved in humid-region occurred as a consequence of European patterns of Holocene hillslope erosion ponds and alluvial fans can be dated, settlement. The geologic record of colo- in areas once covered by Pleistocene ice deciphered isotopically and stratigraph- nial deforestation is clear, revealing sheets and now heavily populated. Yet, ically, and used to understand the his- significant human impact and suggest- understanding past landscape behavior tory of hillslope erosion. Our data sug- ing that past landscape response is a is prerequisite to predicting and mitigat- gest that erosion rates were higher in meaningful basis for guiding future ing future impacts of human-induced the early and late Holocene than in the land management practices. disturbance and climate change. Using mid-Holocene, perhaps the result of changing climate and the frequency INTRODUCTION *E-mail address: [email protected].
    [Show full text]
  • Geology of the Trail.Pdf
    appendix Geologist Report Overview of the Midland Trail’s Geology SECTION 1: CHARLESTON Over the last 300 million years, the the late 1800s and early 1900s (White). The Midland Trail is a prime brine has migrated to these sandstones The Kanawha Formation also contains example of the tremendous effect TO GAULEY BRIDGE known as the “Salt Sands” (Ludlum).The oil some relatively rare cannel coals used (MILE 0 TO 38) and gas, formed from decomposed marine for extracting lamp fuel oil. By the mid- mineral resources and geology plants and animals mixed in with sea floor 1800s, petroleum had replaced them as Geologist have had on West Virginia. The The Kanawha River Valley’s ancient histo- sediments, has also slowly migrated to these lamp fuel (Workman). As a result of ry is the foundation for its cultural history. rocks.At Burning Spring Creek, gas bubbling their high quality, the Kanawha Claudette Trail is richly endowed with coal, Charleston and the other communities built through the spring was believed to have Formation coals have been extensively oil, gas, limestone, sandstone, along the Kanawha owe their existence to been recognized by Native Americans and mined east of Charleston to the Gauley Simard offers an the area’s 300-million-year-old history. perhaps used for fuel (Eggleston). Bridge area. shale, salt, sand and gravel overview of the At that time, known as the Pennsylvania Technology developed by the Ruffner At Shrewsbury, mile 15, these coals because of its 380-million-year- Geologic Period, North America was near brothers to drill brine wells in 1806 was are being mined and the tipple is still geology of the the equator, ferns were as big as trees, and essential equipment for drilling for oil and active.
    [Show full text]