Sequence Stratigraphic Hierarchy of the Upper Devonian Foreknobs Formation, Central Appalachian Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mapping Potential Geologic Hazards for Proposed Highway Construction Projects in Pennsylvania: Route 15 in Lycoming County
Mapping Potential Geologic Hazards for Proposed Highway Construction Projects in Pennsylvania: Route 15 in Lycoming County By Stuart O. Reese, P.G. Pennsylvania Geological Survey 3240 Schoolhouse Road Middletown, PA 17057 Telephone: (717) 702-2028 Fax: (717) 702-2065 email: [email protected] INTRODUCTION acidic drainage from uncovered Marcellus Shale (a black shale with approximately 3 percent sulfur) that had to be mitigated. The current project is situated in north-central Pennsyl- Recently, the Pennsylvania Geological Survey has vania in the Deep Valleys section of the Appalachian Plateaus worked on behalf of the Pennsylvania Department of Trans- portation (PennDOT) to develop maps for specific highway physiographic province in Lycoming County, Pennsylvania. construction projects. The purpose of these maps is to identify Section C41 of U.S. Route 15 is located from north of Trout potential geologic hazards such as landslides, sinkholes, min- Run to the Village of Buttonwood in the “Steam Valley” eralization, historic deep mines, acid drainage, and ground- area of Cogan House and Lewis Townships. The improved water conditions. Map layers have included aerial imagery, highway corridor will become part of Interstate 99, the Appa- digital elevation model (DEM) datasets, digital raster graphics lachian Thruway. This requires an upgrade of the 4 1/2 mile (DRGs), bedrock units and their contacts, surficial and struc- Steam Valley section (C41) to a four-lane limited access high- tural geology features, mapped landslides, glacial boundaries, way that meets current design standards comparable to adja- and water well locations. Possible issues are described in cent sections of U.S. 15. Construction is estimated to begin in the accompanying poster for the proposed construction zones fall 2007 (pending the availability of funds). -
New River Geology
Wow! Did You Know... National Park Service Total length of the New River: 320 miles • U.S. Department of the Interior • Total size of the New River watershed: 6,965 square miles (encompasses 4,457,000 acres) New River Gorge National River • Number of dams on the New River: seven (Fields Dam in Mouth of Wilson, VA; Fries Mill Dam in Fries, VA; Byllesby Dam in Austinville, VA; Buck Dam in Carroll County, VA; Claytor Dam in Dublin, VA; Bluestone Dam in New River Geology: Hinton, WV; and Hawk’s Nest Dam in Ansted, WV) • Highest point: Snake Mountain, North Carolina at Ribbon Through Time 4,800 feet above sea level (south fork of the New River) • Lowest point: Gauley Bridge, West Virginia at 680 feet above sea level. At this point the New and Gauley Rivers join together to form the Kanawha River. • Length of New River in New River Gorge National River: 53 miles, established as a unit of the National Park Service in 1978 (encompasses over 70,000 acres) • American Heritage River: the entire New River received this national designation in 1998 • The New River drops 750 feet between Hinton and Gauley Bridge, West Virginia (around 11 feet per mile) • One of the widest sections of the river in New River Gorge National River: Sandstone Falls area, 1500 feet Stand at any overlook in the New River Gorge and • One of the narrowest sections of the river in New River look into the canyon. These panoramas of the gorge Gorge National River: Fayette Station rapid, 200 feet are where it best presents itself, where it reveals the • One of the deepest sections of the river in New River character of its natural sculpture and landscape. -
Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St. -
A2 and B2: Upper Devonian Kellwasser Extinction Events in New York and Pennsylvania: Offshore to Onshore Transect Across the F
A2 AND B2: UPPER DEVONIAN KELLWASSER EXTINCTION EVENTS IN NEW YORK AND PENNSYLVANIA: OFFSHORE TO ONSHORE TRANSECT ACROSS THE FRASNIAN-FAMENNIAN BOUNDARY ON THE EASTERN MARGIN OF THE APPALACHIAN BASIN ANDREW M. BUSH AND J. ANDREW BEARD Geosciences & Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 GORDON BAIRD Department of Geosciences, SUNY Fredonia, Fredonia, NY 14063 D. JEFFREY OVER Department of Geological Sciences, SUNY Geneseo, Geneseo, NY 14454 with contributions by KATHERINE TUSKES Department of Geological Sciences, Atmospheric, Ocean, and Earth Science, George Mason University, Manassas, VA 20110 SARAH K. BRISSON AND JALEIGH Q. PIER Geosciences & Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 INTRODUCTION Earth-system perturbations caused a series of mass extinction events during the Devonian Period, including the Taghanic event in the Givetian, the Lower and Upper Kellwasser events in the Frasnian, and the Hangenberg event in the Famennian (House, 2002; Bambach, 2006). These extinctions occurred against the backdrop of orbitally forced sea-level fluctuations, the Acadian Orogeny (Averbuch et al., 2005), the expansion of plants and animals on land (Algeo et al., 1995), and ecological changes in the marine biosphere (Signor and Brett, 1984; Bambach, 1999). The Frasnian-Famennian boundary in particular represents a significant global crisis, considered one of the “big five” mass extinctions (Raup and Sepkoski, 1982) that led to the demise of the widespread and diverse Devonian -
(Late Devonian) Boundary Within the Foreknobs Formation, Maryland and West Virginia
The Frasnian-Famennian (Late Devonian) boundary within the Foreknobs Formation, Maryland and West Virginia GEORGE R. McGHEE, JR. Department of Geological Sciences, University of Rochester, Rochester, New York 14627 ABSTRACT The approximate position of the Frasnian-Famennian (Late De- vonian) boundary is determined within the Foreknobs Formation along the Allegheny Front in Maryland and West Virginia by utiliz- ing the time ranges of the articulate brachiopods Athryis angelica Hall, Cyrtospirifer sulcifer (Hall), and members of the Atrypidae. INTRODUCTION The age of strata previously called the "Chemung Formation" along the Allegheny Front in Maryland and West Virginia (Fig. 1) has been of interest to Devonian wokers for some time. Recent at- tempts to resolve this problem include the works of Dennison (1970, 1971) and Curry (1975). New paleontological contribu- tions to the resolution of time relations within the Greenland Gap Group ("Chemung Formation") are the object of this paper, which is an outgrowth of a much larger ecological analysis of Late Devo- nian benthic marine fauna as preserved in the central Appalachians (McGhee, 1975, 1976). STRATIGRAPHIC SETTING The following is a condensation and summary of the evolution of Upper Devonian stratigraphic nomenclatural usage in the study Figure 1. Location map of study area, showing positions of the mea- area; for a more complete and thorough discussion, the reader is sured sections used in this study (after Dennison, 1970). referred to Dennison (1970) and Kirchgessner (1973). The Chemung Formation was originally designated by James lower Cohocton Stage." Elsewhere, concerning the upper limit of Hall (1839) from Chemung Narrows in south-central New York. -
Carboniferous Coal-Bed Gas Total Petroleum System
U.S. Geological Survey Open-File Report 2004-1272 Assessment of Appalachian Basin Oil and Gas Resources: Carboniferous Coal-bed Gas Total Petroleum System Robert C. Milici U.S. Geological Survey 956 National Center Reston, VA 20192 1 Table of Contents Abstract Introduction East Dunkard and West Dunkard Assessment units Introduction: Stratigraphy: Pottsville Formation Allegheny Group Conemaugh Group Monongahela Group Geologic Structure: Coalbed Methane Fields and Pools: Assessment Data: Coal as a source rock for CBM: Gas-In-Place Data Thermal Maturity Generation and Migration Coal as a reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Pocahontas basin and Central Appalachian Shelf Assessment Units Introduction: Stratigraphy: Pocahontas Formation New River Formation Kanawha Formation 2 Lee Formation Norton Formation Gladeville Sandstone Wise Formation Harlan Formation Breathitt Formation Geologic Structure: Coalbed Methane Fields: Coal as a Source Rock for CBM Gas-in-Place Data Thermal Maturity Generation and Migration Coal as a Reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Assessment Results: Appalachian Anthracite and Semi-Anthracite Assessment Unit: Pennsylvania Anthracite Introduction: Stratigraphy: Pottsville Formation Llewellyn Formation Geologic Structure: Coal as a Source Rock for CBM: Gas-In-Place-Data Thermal -
Appalachian Bedrock Geology
Bedrock References (updated November 21, 1998) Alger, W.C., 1986, Petrography of the Upper Devonian sequence east of Elkins, West Virginia: Unpublished M.S. Thesis, West Virginia Univeristy, Morgantown, WV, 168 p. On file(Y/N):y Read?(Y/N):n X-ref(Y/N):n/a Applicability(0,low,m,high):m-h Arkle, T., 1974, Stratigraphy of the Pennsylvanian and Permian systems of the central Appalachians: Geological Society of America Special Paper 148, p. 5-29. Avary, K.L., ed., 1979, Devonian clastics in West Virginia and Maryland, Field Trip Guide, Oct. 3-5, 1979: West Virginia Geological and Economic Survey, 100 p. (Guidebook for Eastern Section meeting of AAPG) (this is the original field trip across sections on US 33, Call No. W 551.72 D498 in Colson Library, WV Collection) Barrell, S.M., 1986, Stratigraphy and depositional environments of Upper Devonian rocks in east central West Virginia and adjacent Virginia: Unpublished M.S. Thesis, University of North Carolina at Chapel Hill, 113 p. On file(Y/N):y Read?(Y/N):n X-ref(Y/N):n/a Applicability(0,low,m,high):m-h Barrell, S.M., and Dennison, J.M., 1986, Northwest-southeast stratigraphic cross-section of Devonian Catsill Delta in east-central West Virginia and adjacent Virginia: Appalachian Basin Industrial Associates, Program Fall Meeting October 16-17, 1986, Pittsburgh, Pennsylvania, v. 11, p. 7-32. Beardsley, R.W. and Cable, M.S., 1983, Overview of the evolution ofthe Appalachian basin: Northeastern Geology, v. 5, p. 137-145. On file(Y/N):y Read?(Y/N):n X-ref(Y/N):n/a Applicability(0,low,m,high):l-m Berger, P.S., Perry, W.J., and Wheeler, R.L., 1979, Three-stage model of brittle deformation in central Appalachians: Southeastern Geology, v. -
Geologic Resources Inventory Map Document for Bluestone National Scenic River
U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Bluestone National Scenic River GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Bluestone National Scenic River blue_geology.pdf Version: 7/21/2015 I Bluestone National Scenic River Geologic Resources Inventory Map Document for Bluestone National Scenic River Table of Contents Geologi.c.. .R..e..s..o..u..r.c..e..s. .I.n..v..e..n..t.o..r.y.. .M...a..p.. .D..o..c..u..m...e..n..t....................................................................... 1 About th..e.. .N..P...S.. .G..e..o..l.o..g..i.c.. .R..e..s..o..u..r.c..e..s. .I.n..v..e..n..t.o..r.y.. .P..r..o..g..r.a..m........................................................... 2 GRI Dig.i.t.a..l. .M...a..p..s. .a..n..d.. .S..o..u..r..c.e.. .M...a..p.. .C..i.t.a..t.i.o..n..s............................................................................ 4 Digital B..e..d..r..o..c.k.. .G...e..o..l.o..g..i.c. .M...a..p.. .o..f. .B..l.u..e..s..t.o..n..e.. .N..a..t.i.o..n..a..l. .S..c..e..n..i.c.. .R..i.v..e..r........................................ 5 Bedroc.k.. .M...a..p.. .U..n..i.t. .L..is..t................................................................................................................................................... 5 Bedroc.k.. .M...a..p.. .U..n..i.t. .D..e..s..c..r.i.p..t.i.o..n..s..................................................................................................................................... 5 PNnr -.. .N..e..w.. -
Xsec A-A Sht1of2 Layout FINAL V
U.S. DEPARTMENT OF THE INTERIOR SCIENTIFIC INVESTIGATIONS MAP 3425 U.S. GEOLOGICAL SURVEY (SHEET 1 OF 2) Explanatory pamphlet accompanies map A Ontario Allegheny Lowlands Plateau province province SEVERNE WATKINS-BEAVER LODI POINT FIRTREE DAMS ALPINE VAN ETTEN ANTICLINE ANTICLINE ANTICLINE ANTICLINE ANTICLINE ANTICLINE GLENORA SYNCLINE UNNAMED COHOCTON CORBETT POINT ENFIELD CAYUTA SYNCLINE SYNCLINE SYNCLINE SYNCLINE SYNCLINE Bend in section Bend in section Bend in section New York W SE Oatka Genesee NW SE Canisteo NW SW Pennsylvania Black Creek River Canaseraga River Tuscarora Creek Creek Creek FEET MILES 0 10 20 30 40 50 60 70 80 90 3,000 1 2 3 4 5 6 William Duchscherer, Jr. E.F. Blair and Associates NYS Natural Gas Company E.F. Blair and Associates Bowdoin Storage Service Inc. NYS Natural Gas Company No. 1 J. Klotzbach No. 1 L. Tyler No. 1 Albert McClurg No. 1 Arthur N. Kennedy No. 1 Hubbard No. 1 Robert Olin API No. 31-037-05117 API No. 31-037-04593 API No. 31-051-04552 API No. 31-051-04630 API No. 31-101-21496 API No. 31-101-03924 Genesee Co., New York Genesee Co., New York Livingston Co., New York Livingston Co., New York Steuben Co., New York Steuben Co., New York Perrysburg Formation Dunkirk Dunkirk Shale Shale 2,000 Member Wiscoy Sandstone Member Java Perrysburg West River Shale, Nunda Wiscoy Sandstone Member Formation Formation Genundewa Sandstone Member unnamed Pipe Creek 0 Pipe Creek shale member Limestone, Penn Member Shale Member Shale Member Perrysburg Yan Shale, and rmation Formation 0 Dun West River Shale, Java Fo kirk -
Methane in Pennsylvania Water Wells Unrelated to Marcellus Shale Fracturing Lisa J
Methane in Pennsylvania water wells unrelated to Marcellus shale fracturing Lisa J. Molofsky of existing gas wells. The correlation of methane concentra- John A. Connor tions with elevation indicates that, on a regional level, elevat- Shahla K. Farhat ed methane concentrations in groundwater are a function of GSI Environmental Inc. geologic features, rather than shale gas development. Houston Technical literature and historical publications confirm the presence of methane gas in natural seeps and water wells Albert S. Wylie Jr. in this region for many decades, long before shale gas drill- Tom Wagner ing operations were initiated in 2006. Cabot Oil & Gas Corp. Potential sources of this naturally occurring methane in- Pittsburgh clude thermogenic gas-charged sandstones in the Catskill formation, which are tapped by most water wells in this re- Results from more than 1,700 water wells sampled and test- gion. These sandstones exhibit an extensive network of frac- ed prior to proposed gas drilling in Susquehanna County, tures, joints, and faults that serve as principle conduits of Pa., show methane to be ubiquitous in shallow groundwater, groundwater flow and potential pathways for the movement with a clear correlation of methane concentrations with sur- of shallow-sourced dissolved methane. face topography. Biogenic methane, which is produced by the natural de- Specifically, water wells located in lowland valley areas composition of organic material within thick valley alluvium exhibit significantly higher dissolved methane levels than and glacial drift deposits in the area, may also be found in wa- water wells in upland areas, with no relation to proximity ter wells that draw water from shallower sediment deposits. -
Italic Page Numbers Indicate Major References]
Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67. -
Geochemical and Mineralogical Sampling of the Devonian Shales in the Broadtop Synclinorium, Appalachian Basin, in Virginia, West Virginia, Maryland, and Pennsylvania
Geochemical and Mineralogical Sampling of the Devonian Shales in the Broadtop Synclinorium, Appalachian Basin, in Virginia, West Virginia, Maryland, and Pennsylvania By Catherine B. Enomoto, James L. Coleman, Jr., Christopher S. Swezey, Patrick W. Niemeyer, and Frank T. Dulong Open-File Report 2015–1061 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner Suggested citation: Enomoto, C.B., Coleman, J.L., Jr., Swezey, C.S., Niemeyer, P.W., and Dulong, F.T., 2015, Geochemical and mineralogical sampling of the Devonian shales in the Broadtop synclinorium, Appalachian basin, in Virginia, West Virginia, Maryland, and Pennsylvania: U.S. Geological Survey Open-File Report 2015‒1061, 32 p., 5 pls., 1 appendix, http://dx.doi.org/10.3133/ofr20151061. ISSN 2331-1258 (online). Contents Abstract .....................................................................................................................................................................