Geology of the Trail.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Trail.Pdf appendix Geologist Report Overview of the Midland Trail’s Geology SECTION 1: CHARLESTON Over the last 300 million years, the the late 1800s and early 1900s (White). The Midland Trail is a prime brine has migrated to these sandstones The Kanawha Formation also contains example of the tremendous effect TO GAULEY BRIDGE known as the “Salt Sands” (Ludlum).The oil some relatively rare cannel coals used (MILE 0 TO 38) and gas, formed from decomposed marine for extracting lamp fuel oil. By the mid- mineral resources and geology plants and animals mixed in with sea floor 1800s, petroleum had replaced them as Geologist have had on West Virginia. The The Kanawha River Valley’s ancient histo- sediments, has also slowly migrated to these lamp fuel (Workman). As a result of ry is the foundation for its cultural history. rocks.At Burning Spring Creek, gas bubbling their high quality, the Kanawha Claudette Trail is richly endowed with coal, Charleston and the other communities built through the spring was believed to have Formation coals have been extensively oil, gas, limestone, sandstone, along the Kanawha owe their existence to been recognized by Native Americans and mined east of Charleston to the Gauley Simard offers an the area’s 300-million-year-old history. perhaps used for fuel (Eggleston). Bridge area. shale, salt, sand and gravel overview of the At that time, known as the Pennsylvania Technology developed by the Ruffner At Shrewsbury, mile 15, these coals because of its 380-million-year- Geologic Period, North America was near brothers to drill brine wells in 1806 was are being mined and the tipple is still geology of the the equator, ferns were as big as trees, and essential equipment for drilling for oil and active. I recommend this site as an ideal old history. The conditions were dragonflies had three-foot wing spans. The gas later in the century (Eggleston). Oil and pull-off area for signs to describe how Trail perfect for depositing the miner- sandstones that dominate the Trail’s road- gas, which were considered a nuisance by coal formed and its impact on the econ- cuts and cliffs are the remains of sandy the salt-well drillers, were wasted to the omy. Today, the majority of these and and als, then later exposing them for streams meandering across a low-lying extent that the Kanawha River was long other West Virginia coals are burned in easy access. As these minerals coastal area next to an inland sea. Plant known as “Old Greasy” by boatmen power plants like the Glasgow Power recommends fossils give proof that these were stream (Eggleston). In 1841, the value of gas was Plant (mile 20) to supply electricity for were discovered and extracted, rather than beach sands. In places, the first realized commercially when it was used homes and industry.West Virginia is the ways to enhance they attracted people and indus- streams were separated by flood plains to evaporate brine in the Dickinson area nation’s leading exporter of electricity. where mud accumulated and was later (Ludlum). Not until 1826 was oil used for The Kanawha River’s wide flood our scenic try to this area. This had a pro- compressed into thinly layered shales. In lamps in workshops and factories plains provided some of the rare flat other places, swamps were teeming with (Eggleston).The Kelley Creek Oil Field near land for building trails, then, later, roads, attributes. found impact on the culture and luxuriant tropical-like plants that thrived in Chelyan (mile 14) and the Cabin Creek Oil communities, and industry. The River history of the heart of West this hot equatorial climate. The plants died Field near Cedar Grove (mile 18) are has always been a vital transportation and piled into layers that formed peat and important gas producers for the area link to the Ohio River for people and Virginia--the Midland Trail. An were eventually compressed over time into (Gulley, et.al.). Today, Kanawha County is commerce. It has been and still is an increasingly important aspect of coal. Limey mud would settle in large lakes one of the state’s larger producers of gas important water source for local com- or a shallow arm of the ocean would cover and lesser amounts of oil. munities and industry.The Marmet Lock the state, its scenic beauty, is the area and deposit thin layers of what is Coal,West Virginia’s most valuable min- and Dam (mile 8) and London Lock and directly related to the underlying now limestone. Over time, the inland sea eral worth more than $4.5 billion annually, Dam Number 3 (mile 24) maintain a drained and these rock layers were uplifted, was first used commercially in 1817 when it constant river level for barge trans- rocks and processes that shaped then worn down to their present heights replaced charcoal as fuel at the Kanawha portation of products such as coal on them over time. above the Kanawha River. These rocks are River salt furnaces (Eggleston). By 1840, the Kanawha. Flood control dams at typical of the sedimentary rocks (made of 200,000 of the 300,000 tons of coal pro- Bluestone, Summersville, and Sutton In this report, the Midland particles or sediments) found in 99 percent duced that year were used at the Kanawha hold back flooding water that would Trail has been divided into four of West Virginia. salt furnaces (Eggleston). In 1997, 13 million normally inundate communities on the The sandstones have been quarried over tons of coal were produced in Kanawha Kanawha flood plain. I recommend signs parts based on changes in geology the years for decorative building stone and County, ranking it 5th among 28 coal-pro- at the dams to explain the role that the expressed in the landscape. Each crushed stone for making roads. (Haught). ducing counties, a distinction it has held for river plays in the lives of its inhabitants. From the early 1800s to about 1980, some at least the past 30 years (Ludlum; WV The Kanawha Falls Park is an excel- section includes recommenda- of the shales have been used to produce the Department of Mines). West Virginia com- lent place to showcase the scenic beau- tions for pull-off areas and signs tile, building brick, and road brick so com- petes with Kentucky every year for the ty in view of Kanawha Falls and to mon in the area (Haught). position of second leading coal-producing describe the vital role geology plays in to explain the essential role geol- At Malden, the sandstones are a source state. the development of the Falls, the New ogy plays in the available mineral of oil, gas, and brine that have, in places, filled West Virginia’s southern coal fields River Gorge, and the most valuable the tiny pore spaces between the sand formed under ideal conditions to make coals of the state, the New River coals. resources, history, and scenic grains.The brine, or ancient sea water, was them the best low-sulfur coals in the world I also recommend a geologic/scenic sign beauty of the area. instrumental in attracting Indians and, later, (Workman). The low-sulfur “smokeless” for the Kanawha Falls park at the Glen settlers, industry, and workers to the area. coals were premium steam coals sought Ferris Power Plant, mile 36. 11.2 after for steamship and locomotive fuel in 11.3 SECTION 2: GAULEY BRIDGE TO RAINELLE SECTION 3: RAINELLE TO WHITE SULPHUR SPRINGS (MILE 38 TO 73) (MILE 73 TO 120) In this section, the Midland Trail County produced close to four million At the Fayette/Greenbrier County line, at Alta (mile 95),have a definite north- leaves the Kanawha and New River tons of coal in 1997, ranking it 15th of 28 mile 73, the rivers and streams have cut east-southwest orientation from the Valleys to traverse the ridge-tops. The coal-producing counties (WV Department through the younger Pennsylvanian-age folding.The folding has also raised the Trail climbs a large arch in the rock that of Mines). New River and Pocahontas Formation layers rock layers higher and cracked them, has lifted the New River Formation’s Lookout, at mile 58, is at the center of to expose Mississippian-aged rocks below. enabling erosive forces of water and Nuttall sandstones from 700 feet the arch in the rocks that lifted the New In 1997, 500,000 tons of New River wind to wear the younger under the surface at Dickinson to a River Formation’s sandstones and coals to and Pocahontas coals in Western Pennsylvanian rock layers away 1270-foot elevation at Hawks Nest the surface.This uplift and subsequent ero- Greenbrier County’s hills were produced, completely. This left the older, (Ludlum). sion created the area’s spectacular scenery This tough sandstone is the same and made the valuable New River ranking it 24th out of 28 coal-producing once-buried Mississippian layers at one that produces gas in this area and Formation coals accessible. The arch was counties (WV Department of Mines). At the surface for the rest of the route. brine and gas at Dickinson (Ludlum). folded when the continents collided about one time, all of the coal mined in this At mile 94 is the Boxley Greenbrier Numerous small cascades grace this 200 million years ago. During this collision, county passed through Rainelle (Heck), Limestone Quarry that produces section of the Trail as they flow over rocks in eastern West Virginia were folded making it a booming town as shown by crushed stone mainly for use in building the edge of the resistant sandstones.
Recommended publications
  • Mine Pool Atlas
    West Virginia Geological Survey West Virginia Mine Pool Atlas WEST VIRGINIA West Virginia Mine Pool Atlas Final Project Report for the project period January 1, 2010 through December 31, 2011 Submitted to: West Virginia Department of Environmental Protection 601 57th Street SE Charleston, WV 25304 Submitted by: West Virginia Geological and Economic Survey 1 Mont Chateau Road Morgantown, WV 26508-8079 Principal Investigator Jane S. McColloch, Senior Geologist Co-Investigators Richard D. Binns, Jr., GIS Database Administrator Bascombe M. Blake, Jr., Manager, Coal Programs Michael T. Clifford, GIS Analyst Sarah E. Gooding, Geologist and GIS Cartographer May 2012 Inter-Agency Agreement Number 036 1 ACKNOWLEDGMENTS This study was greatly facilitated by the ongoing work of the Coal Bed Mapping Program (CBMP) staff. In addition, several individuals provided information, technical expertise, and technical support during the course of the project. Notable among these: • William C. Borth, West Virginia Department of Environmental Protection • A. Nick Schaer, West Virginia Department of Environmental Protection • William J. Toomey, West Virginia Bureau for Public Health • Mary C. Behling, West Virginia Geological and Economic Survey • Gayle H. McColloch, West Virginia Geological and Economic Survey • Edward I. Loud, West Virginia Geological and Economic Survey • Betty L. Schleger, West Virginia Geological and Economic Survey • Susan E. Pool, West Virginia Geological and Economic Survey • Samantha J. McCreery, West Virginia Geological and Economic Survey i ABSTRACT The West Virginia Mine Pool Atlas project was a two-year study by the West Virginia Geological and Economic Survey (WVGES) to evaluate abandoned coal mines as potential groundwater sources. This study was funded by the West Virginia Department of Environmental Protection (WVDEP).
    [Show full text]
  • Chapter 1: Sequence Stratigraphy of the Glenshaw Formation
    Martino, R. L., 2004, Sequence stratigraphy of the Glenshaw Formation (middle–late Pennsylvanian) in the central Appalachian basin, in J. C. Pashin and R. A. Gastaldo, eds., Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata: AAPG Studies 1 in Geology 51, p. 1–28. Sequence Stratigraphy of the Glenshaw Formation (Middle–Late Pennsylvanian) in the Central Appalachian Basin Ronald L. Martino Department of Geology, Marshall University, Huntington, West Virginia, U.S.A. ABSTRACT he Glenshaw Formation consists predominantly of sandstones and mud- rocks with thin limestones and coals, which are thought to have accumu- T lated in alluvial, deltaic, and shallow-marine environments. Analysis of 87 Glenshaw outcrops from southern Ohio, eastern Kentucky, and southern West Vir- ginia has revealed widespread, well-developed paleosols. These paleosols are used, along with marine units and erosional disconformities, to develop a high-resolution sequence-statigraphic framework. The tops of the paleosols constitute boundaries for nine allocycles, which are interpreted as fifth-order depositional sequences. Allocycles in this framework correlate with similar allocycles described from the northern Appalachian basin. A sequence-stratigraphic model is proposed that provides a framework for in- terpreting facies architecture in terms of base-level dynamics linked to relative sea level changes. Lowered base level caused valley incision along drainage lines and sediment bypassing of interfluves, which led to development of well-drained paleo- sols. Rising base level produced valley filling by fluvioestuarine systems (lowstand systems tract/transgressive systems tract), whereas pedogenesis continued on inter- fluves. As drainage systems aggraded, the coastal plain water table rose, and in- terfluvial paleosols were onlapped by paludal and lacustrine deposits.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • Carboniferous Coal-Bed Gas Total Petroleum System
    U.S. Geological Survey Open-File Report 2004-1272 Assessment of Appalachian Basin Oil and Gas Resources: Carboniferous Coal-bed Gas Total Petroleum System Robert C. Milici U.S. Geological Survey 956 National Center Reston, VA 20192 1 Table of Contents Abstract Introduction East Dunkard and West Dunkard Assessment units Introduction: Stratigraphy: Pottsville Formation Allegheny Group Conemaugh Group Monongahela Group Geologic Structure: Coalbed Methane Fields and Pools: Assessment Data: Coal as a source rock for CBM: Gas-In-Place Data Thermal Maturity Generation and Migration Coal as a reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Pocahontas basin and Central Appalachian Shelf Assessment Units Introduction: Stratigraphy: Pocahontas Formation New River Formation Kanawha Formation 2 Lee Formation Norton Formation Gladeville Sandstone Wise Formation Harlan Formation Breathitt Formation Geologic Structure: Coalbed Methane Fields: Coal as a Source Rock for CBM Gas-in-Place Data Thermal Maturity Generation and Migration Coal as a Reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Assessment Results: Appalachian Anthracite and Semi-Anthracite Assessment Unit: Pennsylvania Anthracite Introduction: Stratigraphy: Pottsville Formation Llewellyn Formation Geologic Structure: Coal as a Source Rock for CBM: Gas-In-Place-Data Thermal
    [Show full text]
  • Unusual Preservation of the Trace Fossil Conostichus in Middle Silurian Carbonate Facies of Indiana, USA
    Canadian Journal of Earth Sciences Unusual preservation of the trace fossil Conostichus in middle Silurian carbonate facies of Indiana, USA Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0198.R1 Manuscript Type: Article Date Submitted by the Author: 14-Mar-2016 Complete List of Authors: Thomka, James R.; University of Akron, Geosciences Bantel, Thomas E.; Dry Dredgers Tomin, MarissaDraft J.; University of Akron, Geosciences Keyword: ichnology, Wenlock, trace fossil taphonomy, <i>Conostichus</i> https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 23 Canadian Journal of Earth Sciences 1 Unusual preservation of the trace fossil Conostichus in middle Silurian carbonate facies of 2 Indiana, USA 3 4 James R. Thomka 1* , Thomas E. Bantel 2, and Marissa J. Tomin 1 5 6 1Department of Geosciences, University of Akron, Akron, Ohio 44325, USA; 7 [email protected], [email protected] 8 9 2Dry Dredgers, P.O. Box 210013, Cincinnati, Ohio 45221, USA; [email protected] 10 11 *Corresponding author (J. R. Thomka)Draft 12 Department of Geosciences 13 114 Crouse Hall 14 University of Akron 15 Akron, Ohio 44325, USA 16 E-mail: [email protected] 17 Telephone: +1-630-935-2983 18 Fax: 330-972-7611 19 20 21 22 23 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 23 24 Unusual preservation of the trace fossil Conostichus in middle Silurian carbonate facies of 25 Indiana, USA 26 27 James R. Thomka, Thomas E. Bantel, and Marissa J. Tomin 28 29 Abstract: The long-ranging, plug-shaped ichnofossil Conostichus , attributed to solitary 30 polypoid cnidarians, is most commonly described in the Paleozoic from fine-grained siliciclastic 31 sediments, with few descriptions from carbonate settings.
    [Show full text]
  • Bedrock Geologic Map of New River Gorge National River
    National Park Service U.S. Department of the Interior Bedrock Geologic Map of New River@ Gorge National River @ @ @ @ @ @ @ @ Geologic Resources Inventory @ @ West Virginia @ @ @ @ Natural Resource Stewardship and Science @ @ @ @ @ @ @ @ M @ @ @ PNnrlrl @ @ @ @ PNnr PNnrln PNnrural @ @ PNnrlral @ @ @ @ PNnrural PNnrlral @ Sheet 2: Southern Extent PNnr @ PNnrln PNnr PNp PNnrfck @ @ @ @ @ @ @ Mpn @ @ F PNnrlral @ PNnrural PNnrfck @ PNnr PNnrbck PNnrfck @ @ @ @ @ @ @ @ @ @ @ @ @ Mhu @ @ PNnrlrl Mbs 41 @ PNnrfck @ @ @ @ @ @ @ @ @ @ PNnrlral PNnrlrl@ @ @ @ NPS Boundary See Sheet 1 for Location Map Mann PNnrfck @ @ PNnrsew @ @ @ @ PNnrbck @ Mountain anticline PNnrlral PNppc6 @ @@ @ PNppc3 @@ @ @ PNnrbck PNnr Mbs @ C PNnr @ Mbs @@ @ PNnrfck @ @@ @@ @ @@ PNp @ @ PNnrfck 20 @@ @ PNppc3 @@ @ @ PNnr @ 31 @@ PNnr @ @ PNppc3 @@ PNnrlrl Grandview @ PNnrbck @@ Infrastructure Army Camp PNp PNnrp Sandbar PNnrlrl PNppc6 PNnrbck PNp Mbs Point of interest PNnrfck @ PNnr Mhu PNppc3 PNnrural PNppc3 Terry Prince PNppc6 @@ Cities Mhu PNnrfck Meadow @@ PNppc6 PNp @@ Mhu Quinnimont @ Roads Mhu @ PNppc3 PNnrp Bridge PNnrp PNnrfck 41 Ranger station PNnrlrl PNnrfck PNppc6 Quinnimont Mpn @@ PNnr @@ Mbs @@ Rapids PNp @@ Picnic area @@ @@ McCreery @@ @@ PNp Mpn War Ridge Public river access @@ @@ PNnrfck @@ PNnrlrl PNp @@ @@ @@ PNnr PNppc6 PNppc3 PNnr Mpn Campground PNnrlrl Grassy Shoals Mhu 7 Mhu Geologic Cross Section Lines PNnr Grandview Rapids Mhlsg PNppc6 PNnrp 20 Mhl PNp Mhu Mbs PNppc3 Mpn Mbs C C’ Overlook New River Mhl PNp PNp Mbs Mbs Mbs Mhu Folds PNppc3 ( Glade Creek Mhu Anticline, known or certain PNnrlrl @@ F @@ @@ Mhu M ( Syncline, known or certain PNnr Mhu PNp PNnrbck Mhl PNnrp Linear Geologic Units: Solid where certain, long dashed where approximate, PNnrfck Meadow short dashes where inferred, “?” where queried PNnrlral PNnrlrl PNnrlral Creek Kanawha Formation PNppc6 Mbs Mhl PNp Mhu PNnrp PNkstk - Stockton Coal Bed (Middle Pennsylvanian) Mhu 20 PNkcbg - Coalburg Coal Bed (Middle Pennsylvanian) Mhl 4 PNknp - Peerless and No.
    [Show full text]
  • GSA TODAY • 1998 Section Meetings a Publication of the Geological Society of America Southeastern, P
    Vol. 7, No. 10 October 1997 INSIDE • New Honorary Fellows, p. 15 • Call for Award Nominations, p. 16, 22, 24, 26 GSA TODAY • 1998 Section Meetings A Publication of the Geological Society of America Southeastern, p. 27 Cordilleran, p. 29 Postglacial Ponds and Alluvial Fans: Recorders of Holocene Landscape History Paul Bierman,* Andrea Lini, Paul Zehfuss, Amy Church, Department of Geology, University of Vermont, Burlington, VT 05405 P. Thompson Davis, Department of Natural Sciences, Bentley College, Waltham, MA 02154 John Southon, Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550 Lyn Baldwin, Field Naturalist Program, University of Vermont, Burlington, VT 05405 ABSTRACT northern Vermont as an example, alluvial fan sediments reveal that we demonstrate that the sedimentary the highest rates of hillslope erosion Little is known about rates and record preserved in humid-region occurred as a consequence of European patterns of Holocene hillslope erosion ponds and alluvial fans can be dated, settlement. The geologic record of colo- in areas once covered by Pleistocene ice deciphered isotopically and stratigraph- nial deforestation is clear, revealing sheets and now heavily populated. Yet, ically, and used to understand the his- significant human impact and suggest- understanding past landscape behavior tory of hillslope erosion. Our data sug- ing that past landscape response is a is prerequisite to predicting and mitigat- gest that erosion rates were higher in meaningful basis for guiding future ing future impacts of human-induced the early and late Holocene than in the land management practices. disturbance and climate change. Using mid-Holocene, perhaps the result of changing climate and the frequency INTRODUCTION *E-mail address: [email protected].
    [Show full text]
  • Index to the Geologic Names of North America
    Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________
    [Show full text]
  • Publications, Maps, & Services West Virginia Geological and Economic Survey
    Publications, Maps, & Services West Virginia Geological and Economic Survey Phone: (304) 594-2331 Fax: (304) 594-2575 E-mail: [email protected] On the Web: http://www.wvgs.wvnet.edu Mail: 1 Mont Chateau Road, Morgantown, WV 26508-8079 Location: Mont Chateau Research Center, I-68, exit 10, east of Morgantown Publication ED-A HOW TO USE THIS CATALOG 1 Finding what you want- Start with the INDEX on the facing page. To use it, look up the subject or geographic area (for example, Aerial Photos), and note the publication numbers (EGB-14, etc.). Then look at the upper corners of catalog pages for the series (EGB). Publication EGB-14 will be found in the pages of that section. All publications are listed in numerical order within each section. For availability and price, see ORDER FORM. 2 To Order- Use ORDER FORM, inserted unbound in catalog. (If form is missing, call (304)594-2331 or look on our website under the “Publications” link . A new Order Form is supplied with each order.) Orders must include 6% State sales tax (no tax on purchases by tax-exempt organizations). Checks and money orders (payable to West Virginia Geological Survey) will be accepted as payment. VISA® and MasterCard® will be accepted as payment. "Standing orders" are not accepted. Interested parties will, however, be placed on our mailing list for announcements of new publications. Any publication shown in the catalog, but not listed on the ORDER FORM, is out-of-print. “No Longer Available” is usually listed in the item description as well.
    [Show full text]
  • List R - Rock Units - Alphabetical List
    LIST R - ROCK UNITS - ALPHABETICAL LIST Aberystwyth Grits Ash Hollow Formation Abo Formation Ashe Formation Absaroka Supergroup Asmari Formation Acatlan Complex Astoria Formation Ackley Granite Asu River Group Acoite Formation Athabasca Formation Acungui Group Athgarh Sandstone Adamantina Formation Atoka Formation Adirondack Anorthosite Austin Chalk Admire Group** Austin Group Agbada Formation** Aux Vases Sandstone Ager Formation Avon Park Formation Agrio Formation Aycross Formation Aguacate Group Aztec Sandstone Aguja Formation Baca Formation Akiyoshi Limestone Badami Series Al Khlata Formation Bagh Beds Albert Formation Bahariya Formation Aldridge Formation Bainbridge Formation Alisitos Formation Bajo Barreal Formation Allegheny Group Baker Coal* Allen Formation* Baker Lake Group Almond Formation Bakhtiari Formation Alpine Schist* Bakken Formation** Altyn Limestone Balaklala Rhyolite Alum Shale Formation* Baldonnel Formation Ambo Group** Ballachulish Complex* Ameki Formation Ballantrae Complex Americus Limestone Member Baltimore Gneiss Ames Limestone Bambui Group Amisk Group Banded Gneissic Complex Amitsoq Gneiss Bandelier Tuff Ammonoosuc Volcanics Banff Formation Amsden Formation Bangor Limestone Anahuac Formation Banquereau Formation* Andalhuala Formation Banxi Group Andrew Formation* Baota Formation Animikie Group Baquero Formation Annot Sandstone Barabash Suite Anshan Group Baraboo Quartzite Antalya Complex Baraga Group Antelope Shale Barail Group Antelope Valley Limestone Baralaba Coal Measures Antietam Formation Barnett Shale
    [Show full text]
  • Description of the Charleston Quadrangle
    DESCRIPTION OF THE CHARLESTON QUADRANGLE. By Marius B. Camplbell. GEOGRAPHY. Kentucky, and then trends southwest, parallel numerous streams which drain its surface, form­ and most of its surplus waters reach that stream with the Appalachian Valley, as far as Nashville, ing a hilly region in place of the plateau and a through Kanawha River, which joins it at Point General relations. The Charleston quadrangle Tennessee. Its maximum development is in the broken margin of irregular hill slopes instead of Pleasant, West Virginia. Kanawha River is the embraces an area of 938 square miles, extending vicinity of Lexington, where the Trenton lime­ an escarpment. North of Ohio River the distinc­ largest stream in this region; it crosses the quad­ from latitude 38° on the south to 38° 30' on the stone is exposed at the surface at an altitude of tion between the topographic features is less rangle in a northwesterly direction, flowing in a north, and from longitude 81° 30' on the east to 1000 feet above sea level, but in Tennessee it pronounced than farther south and there is more rather narrow valley which has been incised 82° on the west. The quadrangle is located in again swells out into a dome-like structure which, or less merging of the eastern plateaus into the in the general surface of the plain to a depth of the State of West Virginia,o ' including- o Location, .. of, being eroded, is represented topographically by low plains of the Mississippi Valley. from 500 to 1000 feet. Elk, Coal, and Pocatalico parts of the counties of Kanawha, <i«adrangle- the Central Basin of Tennessee.
    [Show full text]
  • Carboniferous Geology and Biostratigraphy of the Appalachian Basin
    Carboniferous Geology and Biostratigraphy of the Appalachian Basin Edited by Stephen F. Greb and Donald R. Chesnut Jr. Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington Carboniferous of the Appalachian and Black Warrior Basins Edited by Stephen F. Greb and Donald R. Chesnut Jr. Special Publication 10 Series XII, 2009 Our Mission Our mission is to increase knowledge and understanding of the mineral, energy, and water resources, geologic hazards, and geology of Kentucky for the benefit of the Commonwealth and Nation. Earth Resources—Our Common Wealth www.uky.edu/kgs Technical Level General Intermediate Technical © 2009 University of Kentucky For further information contact: Technology Transfer Officer Kentucky Geological Survey 228 Mining and Mineral Resources Building University of Kentucky Lexington, KY 40506-0107 ISSN 0075-5613 Contents Foreward ...................................................................................................................................................................1 1: Introduction Donald R. Chesnut Jr. and Stephen F. Greb ............................................................................................3 2: Carboniferous of the Black Warrior Basin Jack C. Pashin and Robert A. Gastaldo ..................................................................................................10 3: The Mississippian of the Appalachian Basin Frank R. Ettensohn ....................................................................................................................................22
    [Show full text]