Microbial Source Tracking in Coastal Recreational Waters of Southern Maine

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Source Tracking in Coastal Recreational Waters of Southern Maine University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2017 MICROBIAL SOURCE TRACKING IN COASTAL RECREATIONAL WATERS OF SOUTHERN MAINE: RELATIONSHIPS BETWEEN ENTEROCOCCI, ENVIRONMENTAL FACTORS, POTENTIAL PATHOGENS, AND FECAL SOURCES Derek Rothenheber University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Rothenheber, Derek, "MICROBIAL SOURCE TRACKING IN COASTAL RECREATIONAL WATERS OF SOUTHERN MAINE: RELATIONSHIPS BETWEEN ENTEROCOCCI, ENVIRONMENTAL FACTORS, POTENTIAL PATHOGENS, AND FECAL SOURCES" (2017). Master's Theses and Capstones. 1133. https://scholars.unh.edu/thesis/1133 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. MICROBIAL SOURCE TRACKING IN COASTAL RECREATIONAL WATERS OF SOUTHERN MAINE: RELATIONSHIPS BETWEEN ENTEROCOCCI, ENVIRONMENTAL FACTORS, POTENTIAL PATHOGENS, AND FECAL SOURCES BY DEREK ROTHENHEBER Microbiology BS, University of Maine, 2013 THESIS Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Degree of Master of Science in Microbiology September, 2017 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Masters of Science in Microbiology by: Thesis Director, Dr. Stephen H. Jones Research Associate Professor Department of Molecular, Cellular, and Biomedical Sciences Dr. Jeffrey Foster Assistant Professor Department of Molecular, Cellular, and Biomedical Sciences Dr. W. Kelley Thomas Professor Department of Molecular, Cellular, and Biomedical Sciences Date Original approval signatures are on file with the University of New Hampshire Graduate School ii Table of Contents ABSTRACT ...................................................................................................................................v Chapter 1: Background and Literature Review ..............................................................................1 Introduction.................................................................................................................................1 1.1 Public Health Concern in Relation to Fecal Contamination..................................................4 1.1.1 Human/Sewage Fecal Source.........................................................................................5 1.1.2 Bird Fecal Source ...........................................................................................................6 1.1.3 Dog Fecal Source ...........................................................................................................6 1.1.4 Other Wildlife ................................................................................................................7 1.2 Enterococci in the Environment............................................................................................8 1.2.1 Enterococci in Soils........................................................................................................9 1.2.2 Enterococci in Sediments ...............................................................................................9 1.3 Current Microbial Source Tracking Methods. ....................................................................11 1.3.1 Mammal and Human Fecal Assays ..............................................................................11 1.3.2 Dog Fecal Assay...........................................................................................................14 1.3.3 Gull/Bird Fecal Assay ..................................................................................................16 1.3.4 Microbial Source Tracking with Next Generation Sequencing....................................18 1.3.5 Persistence of MST DNA Markers in the Environment...................................................20 1.4.1 Simple Models to Inform Decision Making. ................................................................22 1.4.2 Identification of Fecal Hotspots ...................................................................................23 1.4.3 Using Regional Microbial Source Tracking qPCR Data to Help Convey the Significance of Fecal Pollution to the Public. .......................................................................25 1.5 Study Site Background and Research Questions. ...............................................................27 1.5.1 York, ME......................................................................................................................28 1.5.2 Wells, ME ....................................................................................................................28 1.5.3 Old Orchard Beach, ME...............................................................................................29 1.5.3 Research Questions ......................................................................................................29 Chapter 2: Influences of Fecal Sources, Environmental Sources and Environmental Conditions on Enterococci Concentrations in Coastal Water .........................................................................32 Abstract:....................................................................................................................................32 1. Introduction:..........................................................................................................................34 2. Materials and Methods:.........................................................................................................37 iii 2.1 Site description................................................................................................................37 2.2 Water Sampling...............................................................................................................37 2.2 Soil, Sediment, and Marine Sediment Collection............................................................37 2.3 Enterococci and Total Suspended Solids Quantification.................................................38 2.4 DNA Extractions.............................................................................................................38 2.5 Microbial Source Tracking (MST) PCR and qPCR Assays. ...........................................39 2.6 16S Library Preparation. .................................................................................................40 2.6 Quality Filtering and OTU Picking. ................................................................................41 2.7 SourceTracker Analysis. .................................................................................................41 2.9 Partial Least Squares Regression Model. ........................................................................42 2.10 Routine Statistical Analysis and Data Visualizations....................................................43 3 Results: ..................................................................................................................................43 3.1 Total and Particle-Associated Enterococci Concentrations and Total Suspended Solids in Water.....................................................................................................................................43 3.2 Presence of Fecal Sources in Fresh, Estuarine, and Marine Waters................................45 3.3 Differences Between Water, Soil, and Sediment Bacterial Community Compositions. .47 3.4 Environmental Source Contribution to Water Samples...................................................50 3.5 Relationships Between Environmental Conditions, Fecal Source Concentrations, Environmental Sources and Enterococci Concentrations......................................................51 4 Discussion:.............................................................................................................................54 Supplementary Material 1: MST PCR Primer List, PCR Percent Detection, And qPCR Standard Curve Performance ....................................................................................................61 Supplementary Material 2: Diversity Measurements of OTU Picking Method ........................63 Supplementary 3: PLSR Validation and Diagnostic Plots ........................................................64 Supplementary Material 4: Taxa Key for all Class-level Assignments.....................................68 Chapter 3: Abundance of Fecal-Borne Potential Pathogenic Bacteria and Their Relationship to Fecal Sources in Three Maine Coastal Watersheds......................................................................69 Abstract:....................................................................................................................................69 1. Introduction:..........................................................................................................................70 2. Methods: ...............................................................................................................................72 2.1 Study Sites.......................................................................................................................72 2.2 Sample Collection. ..........................................................................................................73
Recommended publications
  • Kongre Kitabı
    Book of Abstracts International VETistanbul Group Congress 2014 28-30 April, 2014 Istanbul, Turkey Book of Abstracts www.vetistanbul2014.org International VETistanbul Group Congress 2014 28-30 April 2014 International VETistanbul Group Congress 2014 28-30 April, 2014 Istanbul, Turkey Organizing Committee Prof. Dr. Halil GÜNEŞ, Chair Prof. Dr. Bülent EKİZ Prof. Dr. Ali AYDIN Assoc. Prof. Dr. Serkan İKİZ Assoc. Prof. Dr. Hasret DEMİRCAN YARDİBİ Assoc. Prof. Dr. Gülsün PAZVANT Scientific Committee* Prof. Dr. Kemal AK, Turkey Prof. Dr. Anatoliy ALEXANDROVICH STEKOLNIKOV, Russia Prof. Dr. Bogdan AMINKOV, Bulgaria Prof. Dr. Geno ATASANOV ANGELOV, Bulgaria Prof. Dr. Hajrudin BESIROVIC, Bosnia and Herzegovina Prof. Dr. Nihad FEJZIC, Bosnia and Herzegovina Assoc. Prof. Dr. Plamen GEORGIEV, Bulgaria Prof. Dr. Zehra HAJRULAI MUSLIU, Macedonia Assoc. Prof. Dr. Afrim HAMIDI, Kosovo Prof. Dr. Telman ISKENDEROV, Azerbaijan Prof. Dr. Larisa KARPENKO, Russia Prof. Dr. Ismail KIRSAN, Turkey Prof. Dr. Mihni LYUTSKANOV, Bulgaria Assoc. Prof. Dr. Avni ROBAJ, Kosovo Prof. Dr. Velimir STOJKOVSKI, Macedonia Prof. Dr. Semsir VELIYEV, Azerbaijan *Alphabetically listed by the according to the family name Scientific Secreteria Prof. Dr. Bülent EKİZ, Turkey Dr. Karlo MURATOĞLU, Turkey International VETistanbul Group Congress 2014, 28-30 April, Istanbul, Turkey IV International VETistanbul Group Congress 2014 28-30 April 2014 Dear Respectable Colleagues and Guests, First of all, I greet you all with my heart. Also, I would like to thank you for taking place on our side due to the contribution given to the establishment of VETistanbul Group. Known as, VETistanbul Group was established, under the coordination of Istanbul University, with joint decision of Veterinary Faculty of the University of Sarajevo, Saint Petersburg State Academy of Veterinary Medicine, Stara Zagora Trakia University, Ss.
    [Show full text]
  • Rapid NH System Rapid Spot Indole Reagent (R8309002, Supplied Separately) • When Using the 1-Hour Procedure, Only Selective Notes: (15 Ml/Bottle) Agars Can Be Used
    n,n-Dimethyl-1-naphthylamine ..................................... 6.0 g Selective Media: Thayer-Martin Agar; Martin-Lewis 6. Return the panel to a level position. If necessary, gently Glacial Acetic Acid ................................................... 280.0 ml Agar; New York City Agar. tap the panel on the bench top to remove any air Demineralized Water ............................................... 720.0 ml Notes: trapped in the cavities. RapID NH System RapID Spot Indole Reagent (R8309002, supplied separately) • When using the 1-hour procedure, only selective Notes: (15 ml/Bottle) agars can be used. • Examine the test cavities which should appear R8311001 .................................................20 Tests/Kit ρ-Dimethylaminocinnamaldehyde .............................. 10.0 g • Cultures used for inoculum preparation should bubble-free and uniformly filled. Slight irregularities 1. INTENDED USE Hydrochloric Acid .................................................... 100.0 ml preferably be 18-24 hours old. Slow-growing isolates in test cavity fills are acceptable and will not affect Remel RapID™ NH System is a qualitative micromethod Demineralized Water ............................................... 900.0 ml may be tested using 48-hour cultures. test performance. If the panel is grossly misfilled, employing conventional and chromogenic substrates for the *Adjusted as required to meet performance standards. a new panel should be inoculated and the misfilled • The use of media other than those recommended panel discarded. identification of medically important species of Neisseria, 5. PRECAUTIONS may compromise test performance. Haemophilus, and other bacteria isolated from human • Complete the inoculation of each panel receiving in vitro clinical specimens. A complete listing of the organisms This product is for diagnostic use and should be used 3. Using a cotton swab or inoculating loop, suspend inoculation fluid before inoculating additional addressed by RapID NH System is provided in the RapID NH by properly trained individuals.
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Journal of Clinical Microbiology
    JOURNAL OF CLINICAL MICROBIOLOGY Volume 45 September 2007 No. 9 MINIREVIEW 16S rRNA Gene Sequencing for Bacterial Identification in J. Michael Janda and Sharon L. 2761–2764 the Diagnostic Laboratory: Pluses, Perils, and Pitfalls Abbott BACTERIOLOGY Is the Volume of Blood Cultured Still a Significant Factor in Emilio Bouza, Dolores Sousa, 2765–2769 the Diagnosis of Bloodstream Infections? Marta Rodrı´guez-Cre´ixems, Juan Garcı´a Lechuz, and Patricia Mun˜oz Reclassification of Phenotypically Identified Staphylococcus Takashi Sasaki, Ken Kikuchi, 2770–2778 intermedius Strains Yoshikazu Tanaka, Namiko Takahashi, Shinichi Kamata, and Keiichi Hiramatsu Evaluation of Gen-Probe APTIMA-Based Neisseria Erik Munson, Vivian Boyd, Jolanta 2793–2797 gonorrhoeae and Chlamydia trachomatis Confirmatory Testing Czarnecka, Judy Griep, Brian Lund, in a Metropolitan Setting of High Disease Prevalence Nancy Schaal, and Jeanne E. Hryciuk Convenient Test Using a Combination of Chelating Agents Soo-Young Kim, Seong Geun Hong, 2798–2801 for Detection of Metallo-␤-Lactamases in the Clinical Ellen S. Moland, and Kenneth S. Laboratory Thomson Molecular Characterization of Vancomycin-Resistant Bo Zheng, Haruyoshi Tomita, Yong 2813–2818 Enterococcus faecium Isolates from Mainland China Hong Xiao, Shan Wang, Yun Li, and Yasuyoshi Ike Bacteriology of Moderate-to-Severe Diabetic Foot Infections Diane M. Citron, Ellie J. C. 2819–2828 and In Vitro Activity of Antimicrobial Agents Goldstein, C. Vreni Merriam, Benjamin A. Lipsky, and Murray A. Abramson Outbreak of Pseudomonas
    [Show full text]
  • Legionella Shows a Diverse Secondary Metabolism Dependent on a Broad Spectrum Sfp-Type Phosphopantetheinyl Transferase
    Legionella shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase Nicholas J. Tobias1, Tilman Ahrendt1, Ursula Schell2, Melissa Miltenberger1, Hubert Hilbi2,3 and Helge B. Bode1,4 1 Fachbereich Biowissenschaften, Merck Stiftungsprofessur fu¨r Molekulare Biotechnologie, Goethe Universita¨t, Frankfurt am Main, Germany 2 Max von Pettenkofer Institute, Ludwig-Maximilians-Universita¨tMu¨nchen, Munich, Germany 3 Institute of Medical Microbiology, University of Zu¨rich, Zu¨rich, Switzerland 4 Buchmann Institute for Molecular Life Sciences, Goethe Universita¨t, Frankfurt am Main, Germany ABSTRACT Several members of the genus Legionella cause Legionnaires’ disease, a potentially debilitating form of pneumonia. Studies frequently focus on the abundant number of virulence factors present in this genus. However, what is often overlooked is the role of secondary metabolites from Legionella. Following whole genome sequencing, we assembled and annotated the Legionella parisiensis DSM 19216 genome. Together with 14 other members of the Legionella, we performed comparative genomics and analysed the secondary metabolite potential of each strain. We found that Legionella contains a huge variety of biosynthetic gene clusters (BGCs) that are potentially making a significant number of novel natural products with undefined function. Surprisingly, only a single Sfp-like phosphopantetheinyl transferase is found in all Legionella strains analyzed that might be responsible for the activation of all carrier proteins in primary (fatty acid biosynthesis) and secondary metabolism (polyketide and non-ribosomal peptide synthesis). Using conserved active site motifs, we predict Submitted 29 June 2016 some novel compounds that are probably involved in cell-cell communication, Accepted 25 October 2016 Published 24 November 2016 differing to known communication systems.
    [Show full text]
  • Westchester County Restaurants
    RESTAURANTS THAT ARE ENOUGH TO MAKE YOU SICK: AN ANALYSIS OF UNSANITARY CONDITIONS AT NEW YORK CITY AND WESTCHESTER COUNTY RESTAURANTS STATE SENATOR JEFF KLEIN RANKING MINORITY MEMBER CONSUMER PROTECTION COMMITTEE RESTAURANTS ENOUGH TO MAKE YOU SICK: AN ANALYSIS OF UNSANITARY CONDITIONS AT NEW YORK CITY AND WESTCHESTER COUNTY RESTAURANT S How Consumers Are At Risk There is little reason why eating a meal in a restaurant should be any more dangerous than eating a meal in your own home. The volume and variety of foods prepared in a restaurant kitchen makes sanitation more critical, but the basic rules of cleanliness, temperature control and pest control are universal. The major difference is that the restaurant patron cannot usually see the kitchen where his or her meal is prepared. These unseen risks are present and they can pose a serious threat to the public. Worse, they may go undetected and unaddressed for extended periods of time. Although inspections are the first step toward catching these problems before they become public health hazards, many problems linger long after they have been cited by inspectors because restaurants can continue to operate with ongoing violations, with no warning to consumers. Many of the violations we have looked at, and many of the most common violations, are easily correctable, and if eradicated, greatly reduce the probability of an outbreak of food borne illness. By simply ensuring that potentially hazardous foods are properly stored, that they do not come into contact with other ready-to-eat foods, and ensuring that employees wash their hand or change their gloves after handling such foods would almost eliminate the risks posed by these foods.
    [Show full text]
  • Supplemental Material S1.Pdf
    Phylogeny of Selenophosphate synthetases (SPS) Supplementary Material S1 ! SelD in prokaryotes! ! ! SelD gene finding in sequenced prokaryotes! We downloaded a total of 8263 prokaryotic genomes from NCBI (see Supplementary Material S7). We scanned them with the program selenoprofiles (Mariotti 2010, http:// big.crg.cat/services/selenoprofiles) using two SPS-family profiles, one prokaryotic (seld) and one mixed eukaryotic-prokaryotic (SPS). Selenoprofiles removes overlapping predictions from different profiles, keeping only the prediction from the profile that seems closer to the candidate sequence. As expected, the great majority of output predictions in prokaryotic genomes were from the seld profile. We will refer to the prokaryotic SPS/SelD !genes as SelD, following the most common nomenclature in literature.! To be able to inspect results by hand, and also to focus on good-quality genomes, we considered a reduced set of species. We took the prok_reference_genomes.txt list from ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/, which NCBI claims to be a "small curated subset of really good and scientifically important prokaryotic genomes". We named this the prokaryotic reference set (223 species - see Supplementary Material S8). We manually curated most of the analysis in this set, while we kept automatized the !analysis on the full set.! We detected SelD proteins in 58 genomes (26.0%) in the prokaryotic reference set (figure 1 in main paper), which become 2805 (33.9%) when considering the prokaryotic full set (figure SM1.1). The difference in proportion between the two sets is due largely to the presence of genomes of very close strains in the full set, which we consider redundant.
    [Show full text]
  • Identification by 16S Ribosomal RNA Gene Sequencing of Arcobacter
    182 ORIGINAL ARTICLE Identification by 16S ribosomal RNA gene sequencing of Mol Path: first published as 10.1136/mp.55.3.182 on 1 June 2002. Downloaded from Arcobacter butzleri bacteraemia in a patient with acute gangrenous appendicitis SKPLau,PCYWoo,JLLTeng, K W Leung, K Y Yuen ............................................................................................................................. J Clin Pathol: Mol Pathol 2002;55:182–185 Aims: To identify a strain of Gram negative facultative anaerobic curved bacillus, concomitantly iso- lated with Escherichia coli and Streptococcus milleri, from the blood culture of a 69 year old woman with acute gangrenous appendicitis. The literature on arcobacter bacteraemia and arcobacter infections associated with appendicitis was reviewed. Methods: The isolate was phenotypically investigated by standard biochemical methods using conventional biochemical tests. Genotypically, the 16S ribosomal RNA (rRNA) gene of the bacterium was amplified by the polymerase chain reaction (PCR) and sequenced. The sequence of the PCR prod- uct was compared with known 16S rRNA gene sequences in the GenBank by multiple sequence align- ment. Literature review was performed by MEDLINE search (1966–2000). Results: The bacterium grew on blood agar, chocolate agar, and MacConkey agar to sizes of 1 mm in diameter after 24 hours of incubation at 37°C in 5% CO2. It grew at 15°C, 25°C, and 37°C; it also grew in a microaerophilic environment, and was cytochrome oxidase positive and motile, typically a member of the genus arcobacter. Furthermore, phenotypic testing showed that the biochemical profile See end of article for of the isolate did not fit into the pattern of any of the known arcobacter species.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Bacterial Diversity Within the Human Subgingival Crevice
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Veterans Affairs Staff Publications U.S. Department of Veterans Affairs 12-7-1999 Bacterial diversity within the human subgingival crevice Ian Kroes Stanford University School of Medicine Paul W. Lepp Stanford University School of Medicine, [email protected] David A. Relman Stanford University School of Medicine, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/veterans Kroes, Ian; Lepp, Paul W.; and Relman, David A., "Bacterial diversity within the human subgingival crevice" (1999). U.S. Department of Veterans Affairs Staff Publications. 18. https://digitalcommons.unl.edu/veterans/18 This Article is brought to you for free and open access by the U.S. Department of Veterans Affairs at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Department of Veterans Affairs Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Bacterialdiversity within the human subgingivalcrevice Ian Kroes, Paul W. Lepp, and David A. Relman* Departmentsof Microbiologyand Immunology,and Medicine,Stanford University School of Medicine,Stanford, CA 94305, and VeteransAffairs Palo Alto HealthCare System, Palo Alto,CA 94304 Editedby Stanley Falkow, Stanford University, Stanford, CA, and approvedOctober 15, 1999(received for review August 2, 1999) Molecular, sequence-based environmental surveys of microorgan- associated with disease (9-11). However, a directcomparison isms have revealed a large degree of previously uncharacterized between cultivation-dependentand -independentmethods has diversity. However, nearly all studies of the human endogenous not been described. In this study,we characterizedbacterial bacterial flora have relied on cultivation and biochemical charac- diversitywithin a specimenfrom the humansubgingival crevice terization of the resident organisms.
    [Show full text]
  • Decision Summary
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K181324 B. Purpose for Submission: To obtain a substantial equivalence determination for the FilmArray Pneumonia Panel plus C. Measurands: Acinetobacter calcoaceticus-baumannii complex, Enterobacter cloacae complex, Escherichia coli, Haemophilus influenzae, Klebsiella aerogenes, Klebsiella oxytoca, Klebsiella pneumoniae group, Moraxella catarrhalis, Proteus spp., Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, Chlamydia pneumoniae, Legionella pneumophila, Mycoplasma pneumoniae, Adenovirus, Coronavirus, Human Metapneumovirus, Human Rhinovirus/Enterovirus, Influenza A, Influenza B, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Parainfluenza Virus, Respiratory Syncytial Virus, CTX-M, IMP, KPC, NDM, OXA-48-like, VIM, mecA/C and MREJ. D. Type of Test: Qualitative and quantitative nucleic acid amplification assay E. Applicant: BioFire Diagnostics, LLC F. Proprietary and Established Names: FilmArray Pneumonia Panel plus G. Regulatory Information: 1. Regulation section: 21 CFR 866.4001 – MERS-CoV and common respiratory pathogens multiplex nucleic acid detection system 2. Classification: Class II (Special Controls) 3. Product code: PZF 4. Panel: 83-Microbiology H. Indications for use: 1. Indications for use(s): The FilmArray Pneumonia Panel plus is a multiplexed nucleic acid test intended for use with FilmArray, FilmArray 2.0, or FilmArray Torch systems for the simultaneous detection and identification of nucleic acids from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and multiple respiratory viral and bacterial nucleic acids, as well as select antimicrobial resistance genes, in sputum-like specimens (induced or expectorated sputum, or endotracheal aspirates) or bronchoalveolar lavage (BAL)-like specimens (BAL or mini-BAL) obtained from individuals meeting MERS-CoV clinical and/or epidemiological criteria.
    [Show full text]
  • The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
    THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................
    [Show full text]