Helicobacter Spp. — Food- Or Waterborne Pathogens?

Total Page:16

File Type:pdf, Size:1020Kb

Helicobacter Spp. — Food- Or Waterborne Pathogens? FRI FOOD SAFETY REVIEWS Helicobacter spp. — Food- or Waterborne Pathogens? M. Ellin Doyle Food Research Institute University of Wisconsin–Madison Madison WI 53706 Contents34B Introduction....................................................................................................................................1 Virulence Factors ...........................................................................................................................2 Associated Diseases .......................................................................................................................2 Gastrointestinal Disease .........................................................................................................2 Neurological Disease..............................................................................................................3 Other Diseases........................................................................................................................4 Epidemiology.................................................................................................................................4 Prevalence..............................................................................................................................4 Transmission ..........................................................................................................................4 Summary .......................................................................................................................................5 Appendix — FRI Briefing, January 1997: Helicobacter pylori INTRODUCTION detected in other animals. H. pylori has been associated Helicobacter spp. are Gram-negative, curved or spiral- with humans for at least 50,000 years and during that shaped bacteria that live in the stomach, intestine, and time has evolved to adapt to conditions in the human liver of mammals, birds, and reptiles. Helicobacters are gut as humans have also adapted to the presence of fastidious, difficult to cultivate, and are notorious for these bacteria. H. pylori was first described in 1984 entering a viable but non-culturable state when exposed from the stomach of patients with gastritis and peptic to adverse environmental conditions (9). These ulcers (35). Approximately 70–90% of persons in characteristics make it difficult to determine the species developing countries and 25–50% of those in of different isolates. Numerous species have been developed countries are colonized by H. pylori. Some described, but the taxonomy of this genus is still in flux strains are more virulent than others and are more often because many isolates have not been completely associated with more severe gastric diseases, including characterized (24). ulcers and cancer. Most people colonized with Most Helicobacter isolates from humans are H. pylori, perhaps as many as 90%, experience only a classified as H. pylori, but this species is rarely mild inflammatory response and are asymptomatic. Corresponding author: M. Ellin Doyle, Ph.D., [email protected] February 2012 http://fri.wisc.edu/docs/pdf/FRI_Brief_Helicobacter_Feb2012.pdf Food Research Institute, University of Wisconsin–Madison 2 FRI FOOD SAFETY REVIEW: Helicobacter spp. — Food- or Waterborne Pathogens? In fact, it has been suggested that colonization with Numerous other proteins associated with H. pylori is the “normal” condition for humans and that pathogenicity have been identified, including adhesins the recent “loss” of H. pylori in people in more that facilitate binding to intestinal epithelial cells and developed societies (living in more hygienic condi- enzymes. For example, in order to survive stomach tions) may be one factor causing increases in some acidity, helicobacters synthesize urease enzymes to “modern” diseases (6). degrade urea. The ammonia produced by these Some Helicobacter species usually associated with reactions neutralizes hydrochloric acid around the cells, animals have also been detected in humans. These are thereby providing a safe microniche for bacterial sometimes referred to as “H. heilmannii,” but this growth. Some mucoid strains of H. pylori have been group probably includes several distinct species. isolated from gastric biopsies. The exopolysaccharide Estimates of the prevalence of human infection with produced by these strains may protect cells from acid, non-H. pylori helicobacters (NHPH) range from 0.2– antibiotics, and high oxygen levels (55). 6.0% (7;57). H. suis is the most common NHPH isolated from humans, accounting for up to 31% of human NHPH infections (65). Genetic analyses of ASSOCIATED DISEASES some NHPH reveal that they do not produce some Infection with H. pylori irritates the stomach lining, of the major virulence factors of H. pylori but they do causing gastritis. Some individuals may mount an have wide metabolic flexibility, react to a range of effective defense clearing the infection, although this is environmental signals, and produce other enzymes that considered uncommon. Most infections progress to may act as virulence factors (52). chronic active gastritis. However, in 80–90% of Helicobacters have been detected in 142 vertebrate people, these inflammatory reactions are mild and there species, including livestock, companion animals, are no obvious symptoms of infection. In other people, horses, ferrets, geese, tortoises, possums, whales, and depending on the extent and location of the gastritis, dolphins. Several reviews discuss important veterinary either duodenal ulcers or gastric ulcers and gastric Helicobacter spp. (24;26;57). Strains associated with cancer may develop. It has been estimated that about livestock and companion animals include H. suis (pigs, 10% of all infected persons develop peptic ulcers, monkeys), H. felis (cats, dogs, rabbit), H. bizzozeronii another 1–3% develop gastric cancer, and <0.1% (dogs, cats), H. pullorum (chickens, turkeys), and develop another type of gastric tumor, mucosa- H. bovis (cattle). Prevalence of H. suis in pigs is associated lymphoid tissue (MALT) lymphoma (66). usually reported as 60% or more and is sometimes There are reports that infection with H. pylori is associated with gastritis and stomach ulcers. Helico- associated with other human diseases, but in many bacter spp. have been detected in 67–86% of healthy cases evidence is not compelling. dogs and in 41–100% of healthy cats. Higher preva- Several factors, such as smoking, diet, and use of lences have been reported in animals with chronic non-steroidal anti-inflammatory drugs, influence the vomiting (7). As in humans, many animals colonized development of gastrointestinal illnesses. Genetic with Helicobacter spp. are asymptomatic. However, characteristics of infecting strains of Helicobacter and these bacteria can induce a chronic inflammatory of the human host also determine the nature and response that results in lesions in the stomach, intes- severity of illness. Certain genotypes of H. pylori were tine, or liver. found to be more often associated with esophagitis or with peptic ulcer disease in 286 symptomatic, H. pylori-positive Alaskan adults (37). A study of VIRULENCE FACTORS low income African-Americans found that those with Two important virulence factors in H. pylori are the the greatest percentage of genetic markers indicating vacuolating cytotoxin (VacA) and the CagA protein African ancestry had a higher prevalence of antibodies encoded by a cytotoxin-associated gene pathogenicity to H. pylori and to CagA. Some genotypic charac- island (cagPAI). VacA interacts with receptors on the teristic or lifestyle variations associated with African surfaces of cells lining the gastrointestinal tract, ancestry may explain the higher prevalence of virulent modifying some cell functions and causing vacuolation H. pylori in this population (14). and apoptosis. CagA protein is injected into cells by a type IV secretion system also encoded by cagPAI. Gastrointestinal Disease Once internalized, CagA is phosphorylated by host cell Ulcers. H. pylori infection is the most prominent kinases and then acts as a signaling molecule risk factor associated with gastroduodenal ulcers. disrupting cellular activities. These toxins not only Infections are reported in 60% to 80% of those with adversely impact intracellular metabolism but can also gastric ulcers and in 95% of those with duodenal ulcers attack tight junctions between cells, causing tissue (2). When H. pylori gastritis occurs primarily in the damage and allowing H. pylori cells to penetrate the antrum area of the stomach, acid secretion is increased intestinal epithelial layer (59). and this is associated with ulcer formation (5). Corresponding author: M. Ellin Doyle, Ph.D., [email protected] February 2012 http://fri.wisc.edu/docs/pdf/FRI_Brief_Helicobacter_Feb2012.pdf Food Research Institute, University of Wisconsin–Madison FRI FOOD SAFETY REVIEW: Helicobacter spp. — Food- or Waterborne Pathogens? 3 Cancer. In 1994, an IARC monograph reviewed relationship between H. pylori status and symptomatic 4 cohort and 9 case–control studies and concluded that GERD or endoscopic evidence of reflux esophagitis, H. pylori was a cause of gastric cancer in humans. A there was a significantly lower incidence of GERD more recent analysis of a substantial number of symptoms after H. pylori was eradicated from patients. prospective cohort and nested case–control studies Inflammatory bowel diseases (IBD), Crohn’s revealed a significant association between H. pylori disease, and ulcerative colitis
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Kongre Kitabı
    Book of Abstracts International VETistanbul Group Congress 2014 28-30 April, 2014 Istanbul, Turkey Book of Abstracts www.vetistanbul2014.org International VETistanbul Group Congress 2014 28-30 April 2014 International VETistanbul Group Congress 2014 28-30 April, 2014 Istanbul, Turkey Organizing Committee Prof. Dr. Halil GÜNEŞ, Chair Prof. Dr. Bülent EKİZ Prof. Dr. Ali AYDIN Assoc. Prof. Dr. Serkan İKİZ Assoc. Prof. Dr. Hasret DEMİRCAN YARDİBİ Assoc. Prof. Dr. Gülsün PAZVANT Scientific Committee* Prof. Dr. Kemal AK, Turkey Prof. Dr. Anatoliy ALEXANDROVICH STEKOLNIKOV, Russia Prof. Dr. Bogdan AMINKOV, Bulgaria Prof. Dr. Geno ATASANOV ANGELOV, Bulgaria Prof. Dr. Hajrudin BESIROVIC, Bosnia and Herzegovina Prof. Dr. Nihad FEJZIC, Bosnia and Herzegovina Assoc. Prof. Dr. Plamen GEORGIEV, Bulgaria Prof. Dr. Zehra HAJRULAI MUSLIU, Macedonia Assoc. Prof. Dr. Afrim HAMIDI, Kosovo Prof. Dr. Telman ISKENDEROV, Azerbaijan Prof. Dr. Larisa KARPENKO, Russia Prof. Dr. Ismail KIRSAN, Turkey Prof. Dr. Mihni LYUTSKANOV, Bulgaria Assoc. Prof. Dr. Avni ROBAJ, Kosovo Prof. Dr. Velimir STOJKOVSKI, Macedonia Prof. Dr. Semsir VELIYEV, Azerbaijan *Alphabetically listed by the according to the family name Scientific Secreteria Prof. Dr. Bülent EKİZ, Turkey Dr. Karlo MURATOĞLU, Turkey International VETistanbul Group Congress 2014, 28-30 April, Istanbul, Turkey IV International VETistanbul Group Congress 2014 28-30 April 2014 Dear Respectable Colleagues and Guests, First of all, I greet you all with my heart. Also, I would like to thank you for taking place on our side due to the contribution given to the establishment of VETistanbul Group. Known as, VETistanbul Group was established, under the coordination of Istanbul University, with joint decision of Veterinary Faculty of the University of Sarajevo, Saint Petersburg State Academy of Veterinary Medicine, Stara Zagora Trakia University, Ss.
    [Show full text]
  • Iron Is an Essential Nutrient 4 Bacteria and Humans
    Abstract The bhuTUV and bhuO genes play vital roles in the ability of Brucella abortus to use heme as an iron source and are regulated in an iron-responsive manner by RirA and Irr by Jenifer F. Ojeda April, 2012 Dissertation Advisor: RM Roop II Department of Microbiology and Immunology Brucella abortus is a Gram negative intracellular pathogen that causes the zoonotic disease brucellosis. Antibiotic treatment for brucellosis in humans is prolonged and sometimes followed by relapses. Currently, the United States employs prevention of the illness in humans through cattle vaccinations, eliminating the bacterium in its natural host. Unfortunately, these vaccine strains cause the disease in humans, and Brucella research ultimately aims to identify new vaccine targets as well as alternative treatment options. Brucella abortus resides in the phagosomal compartment of the host macrophage where essential nutrients such as iron are limited. Most bacteria need iron, and within the macrophage, heme is a likely source of iron due to the breakdown of red blood cells by the host macrophage. Heme transporters in Gram negative bacteria are highly conserved, and include components for outer membrane, periplasmic, and cytoplasmic membrane transport. BhuA has been previously characterized as the outer membrane heme transporter of Brucella abortus and here we report that BhuT, BhuU, and BhuV (BhuTUV) are the periplasmic and cytoplasmic heme transport components and that they are required in order for Brucella abortus to transport heme as an iron source. Utilization of heme as an iron source requires the breakdown of heme into ferrous iron, carbon monoxide, and biliverdin by a heme oxygenase.
    [Show full text]
  • Phenotypic and Genomic Analyses of Burkholderia Stabilis Clinical Contamination, Switzerland Helena M.B
    RESEARCH Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland Helena M.B. Seth-Smith, Carlo Casanova, Rami Sommerstein, Dominik M. Meinel,1 Mohamed M.H. Abdelbary,2 Dominique S. Blanc, Sara Droz, Urs Führer, Reto Lienhard, Claudia Lang, Olivier Dubuis, Matthias Schlegel, Andreas Widmer, Peter M. Keller,3 Jonas Marschall, Adrian Egli A recent hospital outbreak related to premoistened gloves pathogens that generally fall within the B. cepacia com- used to wash patients exposed the difficulties of defining plex (Bcc) (1). Burkholderia bacteria have large, flexible, Burkholderia species in clinical settings. The outbreak strain multi-replicon genomes, a large metabolic repertoire, vari- displayed key B. stabilis phenotypes, including the inabil- ous virulence factors, and inherent resistance to many anti- ity to grow at 42°C; we used whole-genome sequencing to microbial drugs (2,3). confirm the pathogen was B. stabilis. The outbreak strain An outbreak of B. stabilis was identified among hos- genome comprises 3 chromosomes and a plasmid, shar- ing an average nucleotide identity of 98.4% with B. stabilis pitalized patients across several cantons in Switzerland ATCC27515 BAA-67, but with 13% novel coding sequenc- during 2015–2016 (4). The bacterium caused bloodstream es. The genome lacks identifiable virulence factors and has infections, noninvasive infections, and wound contamina- no apparent increase in encoded antimicrobial drug resis- tions. The source of the infection was traced to contaminat- tance, few insertion sequences, and few pseudogenes, ed commercially available, premoistened washing gloves suggesting this outbreak was an opportunistic infection by used for bedridden patients. After hospitals discontinued an environmental strain not adapted to human pathogenic- use of these gloves, the outbreak resolved.
    [Show full text]
  • Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate Or Sertraline, to Fight Against Helicobacter Pylori Lawn Biofilm
    International Journal of Molecular Sciences Article Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate or Sertraline, to Fight against Helicobacter pylori Lawn Biofilm Paweł Krzy˙zek 1,* , Gra˙zynaGo´sciniak 1 , Karol Fijałkowski 2 , Paweł Migdał 3 , Mariusz Dziadas 4 , Artur Owczarek 5 , Joanna Czajkowska 6, Olga Aniołek 7 and Adam Junka 8 1 Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; [email protected] 2 Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland; karol.fi[email protected] 3 Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; [email protected] 4 Faculty of Chemistry, University of Wroclaw, 50-353 Wroclaw, Poland; [email protected] 5 Department of Drug Form Technology, Wroclaw Medical University, 50-556 Wroclaw, Poland; [email protected] 6 Laboratory of Microbiology, Polish Center for Technology Development PORT, 54-066 Wroclaw, Poland; [email protected] 7 Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland; [email protected] 8 Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; [email protected] * Correspondence: [email protected] Received: 23 November 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: Helicobacter pylori is a bacterium known mainly of its ability to cause persistent inflammations of the human stomach, resulting in peptic ulcer diseases and gastric cancers. Continuous exposure of this bacterium to antibiotics has resulted in high detection of multidrug-resistant strains and difficulties in obtaining a therapeutic effect.
    [Show full text]
  • Helicobacter Pylori and Peptic Ulcers
    Helicobacter pylori and Peptic Ulcers [Announcer] This podcast is presented by the Centers for Disease Control and Prevention. CDC – safer, healthier people. [Karen Hunter] Hello, I'm Karen Hunter. With me today is Dr. David Swerdlow, senior advisor for epidemiology in the National Center for Immunization and Respiratory Diseases at the Centers for Disease Control and Prevention. We’re talking about a paper that appears in the September 2010 issue of the CDC's journal, Emerging Infectious Diseases. The article looks at hospitalization rates for peptic ulcer disease in American patients who may have been infected with the bacteria Helicobacter pylori. Welcome, Dr. Swerdlow. [David Swerdlow] Thank you very much. [Karen Hunter] Dr. Swerdlow, what is Helicobacter pylori and how does it affect people? [David Swerdlow] Helicobacter pylori, or H. pylori for short, is a very common spiral-shaped bacteria that can colonize your stomach. It is estimated that about 50 percent of the world is infected, with most people becoming infected in childhood. Although the majority of people infected with H. pylori do not have any symptoms, infection with the bacteria can cause a variety of gastrointestinal diseases, including peptic ulcer disease and gastric cancers. The rate of infection with H. pylori is decreasing in most of the world, primarily because of improvements in hygiene and sanitation, but since infection is life-long, unless treated, many people are still at risk for peptic ulcer disease. [Karen Hunter] What is it about an infection with H. pylori that increases the risk of developing peptic ulcer disease? [David Swerdlow] H. pylori can colonize and damage the protective lining of your stomach and create chronic inflammation.
    [Show full text]
  • Gastroenteritis and Transmission of Helicobacter Pylori Infection in Households1 Sharon Perry,* Maria De La Luz Sanchez,* Shufang Yang,* Thomas D
    Gastroenteritis and Transmission of Helicobacter pylori Infection in Households1 Sharon Perry,* Maria de la Luz Sanchez,* Shufang Yang,* Thomas D. Haggerty,* Philip Hurst,† Guillermo Perez-Perez,‡ and Julie Parsonnet* The mode of transmission of Helicobacter pylori gastrointestinal infections, infection is associated with infection is poorly characterized. In northern California, conditions of crowding and poor hygiene (7,8) and with 2,752 household members were tested for H. pylori infec- intrafamilial clustering (9–12). The organism has been tion in serum or stool at a baseline visit and 3 months later. recovered most reliably from vomitus and from stools dur- Among 1,752 person considered uninfected at baseline, ing rapid gastrointestinal transit (13). These findings raise 30 new infections (7 definite, 7 probable, and 16 possible) occurred, for an annual incidence of 7% overall and 21% the hypothesis that gastroenteritis episodes provide the in children <2 years of age. Exposure to an infected opportunity for H. pylori transmission. household member with gastroenteritis was associated Household transmission of gastroenteritis is common in with a 4.8-fold (95% confidence interval [CI] 1.4–17.1) the United States, particularly in homes with small chil- increased risk for definite or probable new infection, with dren (14). If H. pylori is transmitted person to person, one vomiting a greater risk factor (adjusted odds ratio [AOR] might expect rates of new infection to be elevated after 6.3, CI 1.6–24.5) than diarrhea only (AOR 3.0, p = 0.65). exposure to persons with H. pylori–infected cases of gas- Of probable or definite new infections, 75% were attributa- troenteritis.
    [Show full text]
  • Supplemental Material S1.Pdf
    Phylogeny of Selenophosphate synthetases (SPS) Supplementary Material S1 ! SelD in prokaryotes! ! ! SelD gene finding in sequenced prokaryotes! We downloaded a total of 8263 prokaryotic genomes from NCBI (see Supplementary Material S7). We scanned them with the program selenoprofiles (Mariotti 2010, http:// big.crg.cat/services/selenoprofiles) using two SPS-family profiles, one prokaryotic (seld) and one mixed eukaryotic-prokaryotic (SPS). Selenoprofiles removes overlapping predictions from different profiles, keeping only the prediction from the profile that seems closer to the candidate sequence. As expected, the great majority of output predictions in prokaryotic genomes were from the seld profile. We will refer to the prokaryotic SPS/SelD !genes as SelD, following the most common nomenclature in literature.! To be able to inspect results by hand, and also to focus on good-quality genomes, we considered a reduced set of species. We took the prok_reference_genomes.txt list from ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/, which NCBI claims to be a "small curated subset of really good and scientifically important prokaryotic genomes". We named this the prokaryotic reference set (223 species - see Supplementary Material S8). We manually curated most of the analysis in this set, while we kept automatized the !analysis on the full set.! We detected SelD proteins in 58 genomes (26.0%) in the prokaryotic reference set (figure 1 in main paper), which become 2805 (33.9%) when considering the prokaryotic full set (figure SM1.1). The difference in proportion between the two sets is due largely to the presence of genomes of very close strains in the full set, which we consider redundant.
    [Show full text]
  • Package Inserts
    Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please send an e-mail to: [email protected] and include 508 Accommodation and the title of the document in the subject line of your e-mail. HIGHLIGHTS OF PRESCRIBING INFORMATION -----------------------WARNINGS AND PRECAUTIONS------------------------ These highlights do not include all the information needed to use • Carefully consider benefits and risks before administering VAXELIS to VAXELIS safely and effectively. See full prescribing information for persons with a history of: VAXELIS. - fever ≥40.5°C (≥105°F), hypotonic-hyporesponsive episode (HHE) or VAXELISTM (Diphtheria and Tetanus Toxoids and Acellular Pertussis, persistent, inconsolable crying lasting ≥3 hours within 48 hours after a Inactivated Poliovirus, Haemophilus b Conjugate and Hepatitis B previous pertussis-containing vaccine. (5.2) Vaccine) - seizures within 3 days after a previous pertussis-containing vaccine. (5.2) Suspension for Intramuscular Injection Initial U.S. Approval: 2018 • If Guillain-Barré syndrome occurred within 6 weeks of receipt of a prior vaccine containing tetanus toxoid, the risk for Guillain-Barré syndrome ----------------------------RECENT MAJOR CHANGES ------------------------ may be increased following VAXELIS. (5.3) Dosage and Administration (2.2) 09/2020 • Apnea following intramuscular vaccination has been observed in some ----------------------------INDICATIONS AND USAGE--------------------------- infants born prematurely. The decision about when to administer an VAXELIS is a vaccine indicated for active immunization to prevent intramuscular vaccine, including VAXELIS, to an infant born prematurely diphtheria, tetanus, pertussis, poliomyelitis, hepatitis B, and invasive disease should be based on consideration of the individual infant’s medical status due to Haemophilus influenzae type b.
    [Show full text]
  • Helicobacter Heilmannii Associated Erosive Gastritis
    CASE REPORT Helicobacter heilmannii Associated Erosive Gastritis Takafumi Yamamoto, Jun Matsumoto, Ken Shiota, Shin-ichi Kitajima*, Masamichi Goto*, Masaomi Imaizumi* and Terukatsu Arima The spiral bacteria, Helicobacter heilmannii (H heilmannii), distinct from Helicobacterpylori (H. pylori), was found in the gastric mucosa of a 71-year-old manwithout clinical symptoms. The endoscopic examination revealed erosive gastritis. Rapid urease test from the antral specimen was positive, but both culture and immunohistological staining for Hpylori were negative. Touch smear cytology showedtightly spiral bacteria, which were consistent with H.heilmannii. At the second endoscopy after medication regimen for eradication of H. pylori, inflammation was decreased and the rapid urease test was negative. The second cytology showedno evidence of Hheilmannii. Anti-H.pylori therapy may be a useful medication for H.heilmannii. (Internal Medicine 38: 240-243, 1999) Keywords: gastric spiral bacteria, touch smear cytology, eradication Introduction previously been healthy. He had a clinical history of Hansen's disease (leprosy). His family history was noncontributory. He Since 1983 when Warren and Marshall (1) first described reported no history of smoking or alcohol, but earlier had a pet Helicohacterpylori (H.pylori) and its association with chronic cat. Neither anemia nor jaundice was present. Abdomenwas gastritis, there have been manyreports of microbiological and flat and soft. Liver, spleen and mass were not palpable. Labo- clinical studies about H.pylori infection. It has been generally ratory data of our clinic waswithin the normal range. Serum accepted that H.pylori infection causes atrophic gastritis, gas- anti-H.pylori immunoglobulin G (IgG) antibody (HELICO-G) tric ulcer and duodenal ulcer.
    [Show full text]
  • Pseudomonas Aeruginosa1
    The Journal of Immunology IL-17 Is a Critical Component of Vaccine-Induced Protection against Lung Infection by Lipopolysaccharide-Heterologous Strains of Pseudomonas aeruginosa1 Gregory P. Priebe,2*†‡ Rebecca L. Walsh,* Terra A. Cederroth,* Akinobu Kamei,* Yamara S. Coutinho-Sledge,* Joanna B. Goldberg,§ and Gerald B. Pier*‡ In a murine model of acute fatal pneumonia, we previously showed that nasal immunization with a live-attenuated aroA deletant of Pseudomonas aeruginosa strain PAO1 elicited LPS serogroup-specific protection, indicating that opsonic Ab to the LPS O Ag was the most important immune effector. Because P. aeruginosa strain PA14 possesses additional virulence factors, we hypoth- esized that a live-attenuated vaccine based on PA14 might elicit a broader array of immune effectors. Thus, an aroA deletant of PA14, denoted PA14⌬aroA, was constructed. PA14⌬aroA-immunized mice were protected against lethal pneumonia caused not only by the parental strain but also by cytotoxic variants of the O Ag-heterologous P. aeruginosa strains PAO1 and PAO6a,d. Remarkably, serum from PA14⌬aroA-immunized mice had very low levels of opsonic activity against strain PAO1 and could not passively transfer protection, suggesting that an antibody-independent mechanism was needed for the observed cross-serogroup protection. Compared with control mice, PA14⌬aroA-immunized mice had more rapid recruitment of neutrophils to the airways early after challenge. T cells isolated from P. aeruginosa ⌬aroA-immunized mice proliferated and produced IL-17 in high quan- tities after coculture with gentamicin-killed P. aeruginosa. Six hours following challenge, PA14⌬aroA-immunized mice had sig- nificantly higher levels of IL-17 in bronchoalveolar lavage fluid compared with unimmunized, Escherichia coli-immunized, or PAO1⌬aroA-immunized mice.
    [Show full text]
  • Comparative Analysis of Four Campylobacterales
    REVIEWS COMPARATIVE ANALYSIS OF FOUR CAMPYLOBACTERALES Mark Eppinger*§,Claudia Baar*§,Guenter Raddatz*, Daniel H. Huson‡ and Stephan C. Schuster* Abstract | Comparative genome analysis can be used to identify species-specific genes and gene clusters, and analysis of these genes can give an insight into the mechanisms involved in a specific bacteria–host interaction. Comparative analysis can also provide important information on the genome dynamics and degree of recombination in a particular species. This article describes the comparative genomic analysis of representatives of four different Campylobacterales species — two pathogens of humans, Helicobacter pylori and Campylobacter jejuni, as well as Helicobacter hepaticus, which is associated with liver cancer in rodents and the non-pathogenic commensal species, Wolinella succinogenes. ε CHEMOLITHOTROPHIC The -subdivision of the Proteobacteria is a large group infection can lead to gastric cancer in humans 9–11 An organism that is capable of of CHEMOLITHOTROPHIC and CHEMOORGANOTROPHIC microor- and liver cancer in rodents, respectively .The using CO, CO2 or carbonates as ganisms with diverse metabolic capabilities that colo- Campylobacter representative C. jejuni is one of the the sole source of carbon for cell nize a broad spectrum of ecological habitats. main causes of bacterial food-borne illness world- biosynthesis, and that derives Representatives of the ε-subgroup can be found in wide, causing acute gastroenteritis, and is also energy from the oxidation of reduced inorganic or organic extreme marine and terrestrial environments ranging the most common microbial antecedent of compounds. from oceanic hydrothermal vents to sulphidic cave Guillain–Barré syndrome12–15.Besides their patho- springs. Although some members are free-living, others genic potential in humans, C.
    [Show full text]