Arcobacter, Campylobacter, and Helicobacter in Reptiles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomics 98 (2011) 370–375
Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc. -
Modification of the Campylobacter Jejuni Flagellin Glycan by the Product of the Cj1295 Homopolymeric-Tract-Containing Gene
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Microbiology (2010), 156, 1953–1962 DOI 10.1099/mic.0.038091-0 Modification of the Campylobacter jejuni flagellin glycan by the product of the Cj1295 homopolymeric-tract-containing gene Paul Hitchen,1,2 Joanna Brzostek,1 Maria Panico,1 Jonathan A. Butler,3 Howard R. Morris,1,4 Anne Dell1 and Dennis Linton3 Correspondence 1Division of Molecular Biosciences, Faculty of Natural Science, Imperial College, Dennis Linton London SW7 2AY, UK [email protected] 2Centre for Integrative Systems Biology at Imperial College, Faculty of Natural Science, Imperial College, London SW7 2AY, UK 3Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK 4M-SCAN Ltd, Wokingham, Berkshire RG41 2TZ, UK The Campylobacter jejuni flagellin protein is O-glycosylated with structural analogues of the nine- carbon sugar pseudaminic acid. The most common modifications in the C. jejuni 81-176 strain are the 5,7-di-N-acetylated derivative (Pse5Ac7Ac) and an acetamidino-substituted version (Pse5Am7Ac). Other structures detected include O-acetylated and N-acetylglutamine- substituted derivatives (Pse5Am7Ac8OAc and Pse5Am7Ac8GlnNAc, respectively). Recently, a derivative of pseudaminic acid modified with a di-O-methylglyceroyl group was detected in C. jejuni NCTC 11168 strain. The gene products required for Pse5Ac7Ac biosynthesis have been characterized, but those genes involved in generating other structures have not. We have demonstrated that the mobility of the NCTC 11168 flagellin protein in SDS-PAGE gels can vary spontaneously and we investigated the role of single nucleotide repeats or homopolymeric-tract- containing genes from the flagellin glycosylation locus in this process. -
Helicobacter Pylori and Peptic Ulcers
Helicobacter pylori and Peptic Ulcers [Announcer] This podcast is presented by the Centers for Disease Control and Prevention. CDC – safer, healthier people. [Karen Hunter] Hello, I'm Karen Hunter. With me today is Dr. David Swerdlow, senior advisor for epidemiology in the National Center for Immunization and Respiratory Diseases at the Centers for Disease Control and Prevention. We’re talking about a paper that appears in the September 2010 issue of the CDC's journal, Emerging Infectious Diseases. The article looks at hospitalization rates for peptic ulcer disease in American patients who may have been infected with the bacteria Helicobacter pylori. Welcome, Dr. Swerdlow. [David Swerdlow] Thank you very much. [Karen Hunter] Dr. Swerdlow, what is Helicobacter pylori and how does it affect people? [David Swerdlow] Helicobacter pylori, or H. pylori for short, is a very common spiral-shaped bacteria that can colonize your stomach. It is estimated that about 50 percent of the world is infected, with most people becoming infected in childhood. Although the majority of people infected with H. pylori do not have any symptoms, infection with the bacteria can cause a variety of gastrointestinal diseases, including peptic ulcer disease and gastric cancers. The rate of infection with H. pylori is decreasing in most of the world, primarily because of improvements in hygiene and sanitation, but since infection is life-long, unless treated, many people are still at risk for peptic ulcer disease. [Karen Hunter] What is it about an infection with H. pylori that increases the risk of developing peptic ulcer disease? [David Swerdlow] H. pylori can colonize and damage the protective lining of your stomach and create chronic inflammation. -
Abortion Outbreak Caused by Campylobacter Fetus Subspecies Venerealis and Neospora Caninum in a Bovine Dairy Herd
https://doi.org/10.22319/rmcp.v10i4.5008 Technical note Abortion outbreak caused by Campylobacter fetus subspecies venerealis and Neospora caninum in a bovine dairy herd Melissa Macías-Rioseco a Rubén D. Caffarena a,b Martín Fraga a Caroline Silveira a Federico Giannitti a,c Germán Cantón d Yanina P. Hecker e Alejandra Suanes f Franklin Riet-Correa a* * Corresponding author: [email protected] a Instituto Nacional de Investigación Agropecuaria (INIA). Plataforma de Investigación en Salud Animal. Ruta 50 km 11, 70000, La Estanzuela, Uruguay. b Universidad de la República, Facultad de Veterinaria, Montevideo, Uruguay. c University of Minnesota, Veterinary Population Medicine Department, MN, USA. d Instituto Nacional de Tecnología Agropecuaria. Balcarce, Argentina. e Consejo Nacional de Investigaciones Científicas y Técnicas. Balcarce, Argentina. f Ministerio de Ganadería Agricultura y Pesca. Montevideo. Dirección de Laboratorios Veterinarios, Uruguay. 1054 Rev Mex Cienc Pecu 2019;10(4):1054-1063 Abstract: In November 2015, an abortion outbreak occurred in a commercial dairy herd of 650 Holstein cows in Florida department, Uruguay. Forty-five (45) cows aborted within 3 wk. Five fetuses were subjected to gross and microscopic pathologic examination, and microbiological testing. One fetus had fibrinous epicarditis and peritonitis, and neutrophilic bronchopneumonia. Campylobacter fetus subsp. venerealis was detected by direct immunofluorescence, isolated and identified by PCR and sequencing of the 16S rDNA in the abomasal fluid and/or lung. Histologic examination of two other fetuses revealed non- suppurative necrotizing encephalitis, lymphohistiocytic myositis and myocarditis, and lymphocytic interstitial nephritis. In these fetuses, N. caninum antigen was detected intralesionally by immunohistochemistry, and N. caninum DNA was amplified by PCR on formalin-fixed paraffin-embedded brain. -
Campylobacter Is a Genus of Gram-Negative, Microaerophilic, Motile, Rod-Shaped Enteric Bacteria
For Vets General Information • Campylobacter is a genus of Gram-negative, microaerophilic, motile, rod-shaped enteric bacteria. • It is the most commonly diagnosed cause of bacterial diarrhea in people in the developed world. • There are several significant species of Campylobacter found in both people and animals. The most common species that cause disease in humans are C. jejuni subsp. jejuni (often simply called C. jejuni) and C. coli, which account for up to 95% of all human cases - C. jejuni is most often associated with chickens, but it is found in pets as well. The most common species found in dogs and cats is C. upsaliensis, which uncommonly infects humans. Cats can also commonly carry C. helveticus, but this species’ role in human disease (if any) remains unclear. • Campylobacter is an important cause of disease in humans. Disease in animals is much less common, but the bacterium is often found in healthy pets. When illness occurs, the most common sign is diarrhea. • Campylobacter infection can spread beyond the gastrointestinal tract, resulting in severe, even life-threatening systemic illness, particularly in young, elderly or immunocompromised individuals. • The risk of transmission of Campylobacter between animals and people can be reduced by increasing awareness of the means of transmission and some common-sense infection control measures. Prevalence & Risk Factors Humans • Campylobacteriosis is one of the most commonly diagnosed causes of bacterial enteric illness in humans worldwide. In Canada, annual disease rates have been estimated to be 26.7 cases/100 000 person-years, but because diarrheal diseases are typically under-reported, the true incidence is likely much higher. -
Helicobacter Heilmannii Associated Erosive Gastritis
CASE REPORT Helicobacter heilmannii Associated Erosive Gastritis Takafumi Yamamoto, Jun Matsumoto, Ken Shiota, Shin-ichi Kitajima*, Masamichi Goto*, Masaomi Imaizumi* and Terukatsu Arima The spiral bacteria, Helicobacter heilmannii (H heilmannii), distinct from Helicobacterpylori (H. pylori), was found in the gastric mucosa of a 71-year-old manwithout clinical symptoms. The endoscopic examination revealed erosive gastritis. Rapid urease test from the antral specimen was positive, but both culture and immunohistological staining for Hpylori were negative. Touch smear cytology showedtightly spiral bacteria, which were consistent with H.heilmannii. At the second endoscopy after medication regimen for eradication of H. pylori, inflammation was decreased and the rapid urease test was negative. The second cytology showedno evidence of Hheilmannii. Anti-H.pylori therapy may be a useful medication for H.heilmannii. (Internal Medicine 38: 240-243, 1999) Keywords: gastric spiral bacteria, touch smear cytology, eradication Introduction previously been healthy. He had a clinical history of Hansen's disease (leprosy). His family history was noncontributory. He Since 1983 when Warren and Marshall (1) first described reported no history of smoking or alcohol, but earlier had a pet Helicohacterpylori (H.pylori) and its association with chronic cat. Neither anemia nor jaundice was present. Abdomenwas gastritis, there have been manyreports of microbiological and flat and soft. Liver, spleen and mass were not palpable. Labo- clinical studies about H.pylori infection. It has been generally ratory data of our clinic waswithin the normal range. Serum accepted that H.pylori infection causes atrophic gastritis, gas- anti-H.pylori immunoglobulin G (IgG) antibody (HELICO-G) tric ulcer and duodenal ulcer. -
Comparative Analysis of Four Campylobacterales
REVIEWS COMPARATIVE ANALYSIS OF FOUR CAMPYLOBACTERALES Mark Eppinger*§,Claudia Baar*§,Guenter Raddatz*, Daniel H. Huson‡ and Stephan C. Schuster* Abstract | Comparative genome analysis can be used to identify species-specific genes and gene clusters, and analysis of these genes can give an insight into the mechanisms involved in a specific bacteria–host interaction. Comparative analysis can also provide important information on the genome dynamics and degree of recombination in a particular species. This article describes the comparative genomic analysis of representatives of four different Campylobacterales species — two pathogens of humans, Helicobacter pylori and Campylobacter jejuni, as well as Helicobacter hepaticus, which is associated with liver cancer in rodents and the non-pathogenic commensal species, Wolinella succinogenes. ε CHEMOLITHOTROPHIC The -subdivision of the Proteobacteria is a large group infection can lead to gastric cancer in humans 9–11 An organism that is capable of of CHEMOLITHOTROPHIC and CHEMOORGANOTROPHIC microor- and liver cancer in rodents, respectively .The using CO, CO2 or carbonates as ganisms with diverse metabolic capabilities that colo- Campylobacter representative C. jejuni is one of the the sole source of carbon for cell nize a broad spectrum of ecological habitats. main causes of bacterial food-borne illness world- biosynthesis, and that derives Representatives of the ε-subgroup can be found in wide, causing acute gastroenteritis, and is also energy from the oxidation of reduced inorganic or organic extreme marine and terrestrial environments ranging the most common microbial antecedent of compounds. from oceanic hydrothermal vents to sulphidic cave Guillain–Barré syndrome12–15.Besides their patho- springs. Although some members are free-living, others genic potential in humans, C. -
Application of a Multiplex PCR Assay for Campylobacter Fetus Detection and Subspecies Differentiation in Uncultured Samples of Aborted Bovine Fetuses
pISSN 1229-845X, eISSN 1976-555X JOURNAL OF J. Vet. Sci. (2012), 13(4), 371-376 http://dx.doi.org/10.4142/jvs.2012.13.4.371 Veterinary Received: 11 Jul. 2011, Revised: 23 Oct. 2011, Accepted: 16 Mar. 2012 Science Original Article Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses Gregorio Iraola1, Martín Hernández1, Lucía Calleros1, Fernando Paolicchi4, Silvia Silveyra3, Alejandra Velilla4, Luis Carretto1, Eliana Rodríguez2, Ruben Pérez1,* 1Evolutionary Genetics Section, Department of Animal Biology, Institute of Biology, and 2Practice Laboratories Unit, Faculty of Sciences, University of the Republic, 11400 Montevideo, Uruguay 3Division of Veterinary Laboratories (DILAVE), Montevideo, Uruguay 4Laboratory of Bacteriology, National Institute of Agricultural Technology (INTA), Balcarce, Argentina Campylobacter (C.) fetus (epsilonproteobacteria) is an in wildlife [3]. In particular, the species Campylobacter important veterinary pathogen. This species is currently (C.) fetus is an important veterinary pathogen that can also divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus infect humans. This species is currently divided into C. subsp. venerealis (Cfv). Cfv is the causative agent of bovine fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. genital Campylobacteriosis, an infectious disease that leads to venerealis (Cfv). A phenotypic variant designated as C. severe reproductive problems in cattle worldwide. Cff is a fetus subsp. venerealis biovar intermedius (Cfvi) has also more general pathogen that causes reproductive problems been described [24]. mainly in sheep although cattle can also be affected. Here we Cff causes abortion mainly in sheep [6] and to a lesser describe a multiplex PCR method to detect C. -
Helicobacter Spp. — Food- Or Waterborne Pathogens?
FRI FOOD SAFETY REVIEWS Helicobacter spp. — Food- or Waterborne Pathogens? M. Ellin Doyle Food Research Institute University of Wisconsin–Madison Madison WI 53706 Contents34B Introduction....................................................................................................................................1 Virulence Factors ...........................................................................................................................2 Associated Diseases .......................................................................................................................2 Gastrointestinal Disease .........................................................................................................2 Neurological Disease..............................................................................................................3 Other Diseases........................................................................................................................4 Epidemiology.................................................................................................................................4 Prevalence..............................................................................................................................4 Transmission ..........................................................................................................................4 Summary .......................................................................................................................................5 -
Campylobacter and Rotavirus Co-Infection in Diarrheal Children in a Referral Children Hospital in Nepal
Campylobacter and Rotavirus co-infection in diarrheal children in a referral children hospital in Nepal Vishnu Bhattarai Tribhuvan University Institute of Science and Technology Saroj Sharma Kantipur City College Komal Raj Rijal ( [email protected] ) Tribhuvan University https://orcid.org/0000-0001-6281-8236 Megha Raj Banjara Tribhuvan University Institute of Science and Technology Research article Keywords: Campylobacter , Rotavirus, co-infection, diarrhea, children Posted Date: August 23rd, 2019 DOI: https://doi.org/10.21203/rs.2.13512/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on February 13th, 2020. See the published version at https://doi.org/10.1186/s12887-020-1966-9. Page 1/13 Abstract Diarrhea, although easily curable, is a global cause of death for a million children every year. Rotavirus and Campylobacter are the most common etiological agents of diarrhea in children under 5 years of age. However, in Nepal, these causative agents are not routinely examined for the diagnosis and treatment. The objective of this study was to determine Campylobacter co-infection associated with Rotaviral diarrhea in children less than 5 years of age. A cross-sectional study was conducted at Kanti Children's Hospital (KCH), Kathmandu, Nepal from November 2017 to April 2018. A total of 303 stool specimens from diarrheal children were processed to detect Rotavirus using rapid Rotavirus Ag test kit, and Campylobacter by microscopy, culture and biochemical tests. Antibiotic susceptibility test of Campylobacter isolates was performed according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines 2015. -
Helicobacter Species
technical sheet Helicobacter species Classification colonization. Most animals that carry Helicobacter Gram-negative bacteria; spiral, fusiform, or curved; spp. are asymptomatic. Disease in immunocompetent some with flagella animals caused by Helicobacter is almost exclusively limited to susceptible strains of mice infected with Family either H. bilis or H. hepaticus. Immunodeficient animals seem susceptible to disease due to a broader range Helicobacteriaceae of Helicobacter spp. In susceptible animals, the main clinical sign associated with Helicobacter infection is The species currently described in rats and mice are: H. bilis, rectal prolapse secondary to typhlitis or typhlocolitis. H. ganmani, H. hepaticus, H. muridarum, H. mastomyrinus, Helicobacter-infected animals can also present with H. rappini, H. rodentium, and H. typhlonius (mice) and diarrhea. H. hepaticus may also be associated with H. bilis, H. muridarium, H. rodentium, H. trogontum, and the development of liver and colon cancer in some H. typhlonius (rats). The Helicobacter species associated with strains of mice, such as the A/J. On histopathology, clinical disease in rats and mice are primarily H. bilis and typhlocolitis, and hepatitis may be seen. The common H. hepaticus. rodent Helicobacter spp. do not colonize the stomach, so gastritis is not seen. Affected species Almost every species of mammal examined appears to Diagnosis have at least one associated Helicobacter species. Serologic diagnosis of Helicobacter infection is possible. Serology is not commercially available Frequency because although the assay is sensitive (after a Common in both wild rodents and laboratory animal time delay, to allow for antibody production), it is not facilities. specific. It is also not clear whether intestinal colonization with all Helicobacter spp. -
Pregnancy Loss in Beef Cattle
Pregnancy Loss in Beef Cattle Guide B-228 John C. Wenzel and Timothy J. Hanosh1 Cooperative Extension Service • College of Agricultural, Consumer and Environmental Sciences This publication is scheduled to be updated and reissued 6/16. Abortion and loss of pregnancy in beef cattle can movement of cattle; origin of new cattle and occur for a variety of reasons. Many times the rea- bulls brought into the herd; results of semen son for the loss is complex and difficult to diagnose. evaluations; and diagnostic test results on bulls. This guide will briefly outline and discuss some of the more common diseases and causes of loss of 5. Keep a reproductive history on your cow herd, pregnancy. If a loss of pregnancy is suspected, con- including conception rate, calving rate, weaning tact your local veterinarian for assistance and advice rate, and dates when bulls are exposed to cows. for diagnosis and control of the causative agent in the pregnancy loss. The following are some helpful steps to take when an abortion is identified. Bovine virus DiarrHea CAUTION: Many diseases that cause abortion Bovine virus diarrhea (BVD) is a viral disease in cattle are caused by pathogens that can cause caused by a pestivirus with many syndromes. For disease in people. Follow good biosecurity measures this guide, only the abortion syndrome will be dis- and use personal protective equipment such as latex cussed. The pregnancy loss associated with BVD is gloves and a mask when handling the aborted fetus dependent on when in gestation the dam is exposed and materials. Use disinfectant soap when washing to the virus.