Computational Database Systems for Massive Scientific Datasets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report
ANNUAL REPORT 2019FISCAL YEAR ACM, the Association for Computing Machinery, is an international scientific and educational organization dedicated to advancing the arts, sciences, and applications of information technology. Letter from the President It’s been quite an eventful year and challenges posed by evolving technology. for ACM. While this annual Education has always been at the foundation of exercise allows us a moment ACM, as reflected in two recent curriculum efforts. First, “ACM’s mission to celebrate some of the many the ACM Task Force on Data Science issued “Comput- hinges on successes and achievements ing Competencies for Undergraduate Data Science Cur- creating a the Association has realized ricula.” The guidelines lay out the computing-specific over the past year, it is also an competencies that should be included when other community that opportunity to focus on new academic departments offer programs in data science encompasses and innovative ways to ensure at the undergraduate level. Second, building on the all who work in ACM remains a vibrant global success of our recent guidelines for 4-year cybersecu- the computing resource for the computing community. rity curricula, the ACM Committee for Computing Edu- ACM’s mission hinges on creating a community cation in Community Colleges created a related cur- and technology that encompasses all who work in the computing and riculum targeted at two-year programs, “Cybersecurity arena” technology arena. This year, ACM established a new Di- Curricular Guidance for Associate-Degree Programs.” versity and Inclusion Council to identify ways to create The following pages offer a sampling of the many environments that are welcoming to new perspectives ACM events and accomplishments that occurred over and will attract an even broader membership from the past fiscal year, none of which would have been around the world. -
AWARDS SESSION New Orleans Convention Center New Orleans, Louisiana Tuesday, 18 November 2014
Association for Computing Machinery AWARDS SESSION New Orleans Convention Center New Orleans, Louisiana Tuesday, 18 November 2014 SC14 Awards Session will honor the following individuals for their contributions to the computing profession: Charles E. Leiserson 2014 ACM/IEEE Computer Society Ken Kennedy Award Satoshi Matsuoka 2014 IEEE Computer Society Sidney Fernbach Award Gordon Bell 2014 IEEE Computer Society Seymour Cray Computer Engineering Award The Kennedy Award is presented by ACM President Alexander L. Wolf and Computer Society President Dejan S. Milojičić. The IEEE Computer Society Seymour Cray and Sidney Fernbach Awards are presented by 2014 IEEE Computer Society President Dejan S. Milojičić. The 2014 ACM/IEEE Computer Society Ken Kennedy Award ACM/IEEE Computer Society Ken Kennedy Award The Ken Kennedy Award was established in memory of Ken Kennedy, the founder of Rice University’s nationally ranked computer science program and one of the world’s foremost experts on high-performance computing. The award consists of a certificate and a $5,000 honorarium and is awarded jointly by the ACM and the IEEE Computer Society for outstanding contributions to programmability or productivity in high-performance computing together with significant community service or mentoring contributions. http://awards.acm.org http://computer.org/awards PREVIOUS RECIPIENTS — ACM/IEEE COMPUTER SOCIETY KEN KENNEDY AWARD 2013 - Jack Dongarra 2012 - Mary Lou Soffa 2011 - Susan L. Graham 2010 - David Kuck 2009 - Francine Berman 2014 ACM/IEEE COMPUTER SOCIETY KEN KENNEDY AWARD SUBCOMMITTEE Mary Hall, University of Utah, Chair David Rosenblum, National University of Randy Allen, National Instruments Singapore Keith Cooper, Rice University Valentina Salapura, IBM Susan Graham, University of California, Berkeley* David Padua, University of Illinois at Urbana- Champaign *Previous recipient Charles E. -
What We Learned from the PDP-11
ABSTRACT Gordon Bell, William Il. Strecker November 8, 1975 COMPUTER STRUCTURES: WHAT HAVE WE LEARNED FROM THE PDP-ll? Over the FDP-11’S six year life behave in a particular way? about 20,000 specimens have been Where does it get inputs? HOW built based on 10 species (models). does it formulate and solve Al though range was a design goal, problems? it was unquantified; the actual range has exceeded expectations 3. The rest of the DEC (5OO:l in memory size and system organization--this includes price]. The range has stressed the applications groups assoc ia ted baa ic mini (mall computer with market groups # sales, architecture along all dimensions. service and manufacturing. The marn PM.5 structure, i.e. the UNIBUS, has been adopted as a de 4. The user, who receives the facto standard of interconnection final OUtQUt. for many micro and minicomputer systems. The architectural Note, that if we assume that a experience gained in the design and QrOduc t is done sequentially, and use of the PDP-11 will be described each stage has a gestation time of in terms Of its environment about two years, it takes roughly (initial goals and constraints, eight years for an idea from basic technology, and the organization research to finally appear at the that designs, builds and user’s site. Other organizations distributes the machine). ala0 affect the design : competitors (they establish a deaign level and determine the product life): and government IsI 1.0 TNTRODUCTTON and standards. There are an ever increasing number Although one might think that of groups who feel compel led to computer architecture is the sole control all products bringing them determinant of a machine, it is all common norm : the merely the focal point for a government (“5) , testing groups such specification. -
Gordon's Personal View of Personal Computing: Before the PC
Gordon’s Personal View of Personal Computing: before the PC Vintage Computer Society 27 September 1998 Gordon Bell [email protected] http://www.research.microsoft.com/~gbell Apple II First personal computer Micral In the beginning: Manchester “Baby” ran the first program 22 June 1948 English Electric Deuce Console 1955 Whirlwind c1953 … 1st generation, 16-bit word; 4 KB memory; 8 K drum Whirlwind begot TX-O/TX-2 begot DEC PDP-1 Real time, first compiler, ECAD, text editor Whirlwind console, drum, 1 Kw core SAGE Control Room c 1962. Whirlwind used for first experiments. SAGE (Semi-Automatic Ground Environment) Operator Console TX-0 Console c1959… one of the first transistorized personal computers Speech, handwriting recognition, neuro data analysis, etc. Interactive editors, debuggers, etc. MIT Speech group with TX-0, c1959. DEC Computer before PDP-11 1957 1961 1963 DEC PDP-1 c1961 Wes Clark & LINC c1962: Personal computers for bio-medical research PDP-5 c1964: PDP-8 predecessor Process control, real time experiments. Fortran ran in 4 K, 12 bit words Gbell with LINC and PDP-8 c1965 PDP-8: first mini First OEM computer. OS/8 (from timesharing) begot RT-11 begot CPM PDP-8 Modules PDP-8/E PDP-8 and Linc Family Tree PDP-8 12 bit word price (t) PDP-8 prices (t) Timesharing: given everyone their own, low cost, personal computer PDP-6 c1965 : First commercial time shared computer. Gbell & Alan Kotok PDP-6 Development team c1965 PDP-6/10/ DECsystem 10/20 family tree TThheerree iiss nnoo rreeaassoonn aannyyoonnee wwoouulldd wwaanntt aa ccoommppuutteerr iinn tthheeiirr hhoommee. -
R00456--FM Getting up to Speed
GETTING UP TO SPEED THE FUTURE OF SUPERCOMPUTING Susan L. Graham, Marc Snir, and Cynthia A. Patterson, Editors Committee on the Future of Supercomputing Computer Science and Telecommunications Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Gov- erning Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engi- neering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for ap- propriate balance. Support for this project was provided by the Department of Energy under Spon- sor Award No. DE-AT01-03NA00106. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the organizations that provided support for the project. International Standard Book Number 0-309-09502-6 (Book) International Standard Book Number 0-309-54679-6 (PDF) Library of Congress Catalog Card Number 2004118086 Cover designed by Jennifer Bishop. Cover images (clockwise from top right, front to back) 1. Exploding star. Scientific Discovery through Advanced Computing (SciDAC) Center for Supernova Research, U.S. Department of Energy, Office of Science. 2. Hurricane Frances, September 5, 2004, taken by GOES-12 satellite, 1 km visible imagery. U.S. National Oceanographic and Atmospheric Administration. 3. Large-eddy simulation of a Rayleigh-Taylor instability run on the Lawrence Livermore National Laboratory MCR Linux cluster in July 2003. -
Thesis May Never Have Been Completed
UvA-DARE (Digital Academic Repository) Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure Goodwin, D.T. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Goodwin, D. T. (2016). Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Sep 2021 Digital Equipment Corporation (DEC) (DEC) Corporation Digital Equipment David Thomas David Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin 1 Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. -
Bell's Law of Computer Classes
Bell’s Law; P,M,S Structures; Rules of thumb; and Taxonomies 1957-1998. 41 yrs. 4 generations: Tubes > transistors > ICs, VLSI (micros) > clusters - winner take all How computer classes form, evolve …and die (according to economically based laws) Gordon Bell Microsoft Research, Silicon Valley Laboratory References Moore’s Law http://www.computerhistory.org/semiconductor/timeline/1965-Moore.html Bell’s Law: http://research.microsoft.com/research/pubs/view.aspx?0rc=p&type=technical +report&id=1389 Bell, C. G., R. Chen and S. Rege, "The Effect of Technology on Near Term Computer Structures," Computer 2 (5) 29-38 (March/April 1972). IEEE History Center's Global History Network: http://ieeeghn.org/wiki/index.php/STARS:Rise_and_Fall_of_Minicomputers In retrospect…by 1971, the next 50 years of computing was established 1. Moore’s Law (1965) transistors/die double every 18 mos. 2. Intel 4004, Processor-on-a-chip (1971) Clearly, by 1978 16-bit processor-on-a-chip 3. Bell et al 1971 observation...computer evolution 1. Computers evolve at constant price (Moore’s Law) 2. Computer clases form every decade (Bell’s Law) New technology, manufacturers, uses and markets How I think about computers • P,M,S describes architectures i.e. the components and how they are interconnected and interact – Reveals structure (size, cost, performance, power, etc.) – Parallelism, bottlenecks, and rules of thumb – Functional evolution to compete with larger computers • Bell’s Law determines classes birth & death • Rules of thumb determine goodness • Taxonomies enumerate alternatives A Walk-Through Computer Architectures from The Largest & Fastest to the Digestible Computers have evolved from a bi-furcation of: • calculating (P) aka scientific and record keeping (M) aka commerce to • control (K), • interfacing (T/Transduction) including GUIs, NUI, and • Communication (L), switching (S) and networking (N) Every information carrier from greeting cards to phones is an embedded computer. -
Biography Five Related and Significant Publications
GUY BLELLOCH Professor Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 [email protected], http://www.cs.cmu.edu/~guyb Biography Guy E. Blelloch received his B.S. and B.A. from Swarthmore College in 1983, and his M.S. and PhD from MIT in 1986, and 1988, respectively. Since then he has been on the faculty at Carnegie Mellon University, where he is now an Associate Professor. During the academic year 1997-1998 he was a visiting professor at U.C. Berkeley. He held the Finmeccanica Faculty Chair from 1991–1995 and received an NSF Young Investigator Award in 1992. He has been program chair for the ACM Symposium on Parallel Algorithms and Architectures, program co-chair for the IEEE International Parallel Processing Symposium, is on the editorial board of JACM, and has served on a dozen or so program committees. His research interests are in parallel programming languages and parallel algorithms, and in the interaction of the two. He has developed the NESL programming language under an ARPA contract and an NSF NYI award. His work on parallel algorithms includes work on sorting, computational geometry, and several pointer-based algorithms, including algorithms for list-ranking, set-operations, and graph connectivity. Five Related and Significant Publications 1. Guy Blelloch, Jonathan Hardwick, Gary L. Miller, and Dafna Talmor. Design and Implementation of a Practical Parallel Delaunay Algorithm. Algorithmica, 24(3/4), pp. 243–269, 1999. 2. Guy Blelloch, Phil Gibbons and Yossi Matias. Efficient Scheduling for Languages with Fine-Grained Parallelism. Journal of the ACM, 46(2), pp. -
Oral History Interview with Joseph F. Traub
An Interview with JOSEPH F. TRAUB OH 94 Conducted by William Aspray on 29 March 1985 Columbia University (New York, NY) Charles Babbage Institute The Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute 1 Joseph F. Traub Interview 29 March 1985 Abstract The main topic is institutions in computing. Traub begins by discussing why computer science has developed as a discipline at some institutions but not others. Institutions that are highlighted include Stanford, Berkeley, University of Pennsylvania, MIT, and Carnegie-Mellon. Traub discusses his experiences as chairman of the computer science departments at Carnegie-Mellon and later Columbia. Other topics include: industrial and government funding of computer science departments (in particular the role of the Advanced Research Projects Agency of the Defense Department); the relationships between academic centers, such as M.I.T., Stanford, Columbia, and Carnegie-Mellon; and the importance of educational institutions to regional centers of industrial computing. At the end of the interview Traub returns to a topic of his earlier interviews, his experiences at Bell and Watson Laboratories. 2 JOSEPH F. TRAUB INTERVIEW DATE: 29 March 1985 INTERVIEWER: William Aspray LOCATION: Columbia University (New York, NY) ASPRAY: This is a session on the 29th of March, 1985, with Joseph Traub in his office at Columbia University. It is the third in a series of interviews, and the main topic in this session is institutions in computing. Why don't we start by talking about why certain universities - Pennsylvania, Harvard, Columbia, which had strong early activities in computing - didn't develop into first-rate research and teaching centers in computer science? TRAUB: It seems to me that in each of the institutions, that have become the major centers one can usually identify one or two people who were responsible. -
Computing History: a Personal and Industry View
or attempted designs; seven reaIly suc- ceeded, about 20 are still trying, and a COMPUTING HISTORY: A whoIt flock are no longer with us. including American Computet, Atron, BIT, and Viatron. With some under- PERSONAL AND INDUSTRY standing of the historic generational patterns my goal was to get DEC into VIEW/GORDON BELL large scale integrated circuits and to establish the YAX line as a new stan- lis. and Herbert Simon wrote a letter to dard. And ironically, this year 20 years Science and identified computer sci- after the first PDP-8 was built, sales of ence. The next steps, what we now call the machine were higher than ever “the third and fourth generations’’ weren’t at all clear. At Carnegie, Allen Newel1 and I collected materials and years objects from past machines to build Ironically, his year 20 theories. This resulted in a book en- 1 der he fint PDP$ was titled Computer Srructuras that in- fluenced at least two generations of built des of the muchine computer architects. The concepts of the DEC Unibus and general registers were higher hnever. came from this work. Other Carnegie alumni extended and implemented thae ideas in subsequent (and future) since it is implemented on a single chip DEC computers. These developments and embedded in a word processor. came from a deep knowIedgc of past Now one of my goals is to con- computers, and how they were used sider not just the development of a sin- and gave some insights about the fu- gle company, but of the entire industry ture trajectory of computer evolution. -
Oral History of Gordon Bell
Oral History of Gordon Bell Oral History of Gordon Bell Interviewed by: Gardner Hendrie Corrected by CGB May 9, 2008 Recorded: June 23, 2005 San Francisco, California Interview 1, Transcript 1 CHM Reference number: X3202.2006 © 2005 Computer History Museum CHM Ref: X3202.2006 © 2005 Computer History Museum Page 1 of 171 Oral History of Gordon Bell Gardner Hendrie: We have Gordon Bell with us, who's very graciously agreed to do an oral history interview for the Computer History Museum. Thank you up front, Gordon, for doing that. Gordon Bell: Am happy to. Hendrie: What I would like to start with is maybe you could tell us a little bit about where you were born, your family, what your parents did, how many brothers and sisters you had, just a little background as to sort of where you were during your formative years. Bell: Great. I'm a fan of crediting everything to my parents and environment that I grew up in. I was born in Kirksville, Missouri, on August 19th, 1934. Kirksville was a college town and also a farming community, about 10,000 population, and had the Northeast Missouri State Teacher's College, which has now morphed itself into the Truman University. The town now has about 20,000 people. My father had an electrical contracting business and appliance store and did small appliance repair, and I grew up working at "the shop". My uncle was with him and had the refrigeration part of the business. And so I spent all my formative years at the shop and in that environment. -
ALLEN NEWELL March 19, 1927–July 19, 1992
NATIONAL ACADEMY OF SCIENCES A L L E N N E W ELL 1927—1992 A Biographical Memoir by HER BE R T A. S IMON Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. ALLEN NEWELL March 19, 1927–July 19, 1992 BY HERBERT A. SIMON ITH THE DEATH from cancer on July 19, 1992, of Allen WNewell the field of artificial intelligence lost one of its premier scientists, who was at the forefront of the field from its first stirrings to the time of his death and whose research momentum had not shown the slightest diminu- tion up to the premature end of his career. The history of his scientific work is partly my history also, during forty years of friendship and nearly twenty of collaboration, as well as the history of the late J. C. (Cliff) Shaw, a longtime colleague; but I will strive to make this account Allen-cen- tric and not intrude myself too far into it. I hope I will be pardoned if I occasionally fail.1 If you asked Allen Newell what he was, he would say, “I am a scientist.” He played that role almost every waking hour of every day of his adult life. How would he have answered the question, “What kind of scientist?” We hu- mans have long been obsessed with four great questions: the nature of matter, the origins of the universe, the nature of life, the workings of mind.