AWARDS SESSION New Orleans Convention Center New Orleans, Louisiana Tuesday, 18 November 2014

Total Page:16

File Type:pdf, Size:1020Kb

AWARDS SESSION New Orleans Convention Center New Orleans, Louisiana Tuesday, 18 November 2014 Association for Computing Machinery AWARDS SESSION New Orleans Convention Center New Orleans, Louisiana Tuesday, 18 November 2014 SC14 Awards Session will honor the following individuals for their contributions to the computing profession: Charles E. Leiserson 2014 ACM/IEEE Computer Society Ken Kennedy Award Satoshi Matsuoka 2014 IEEE Computer Society Sidney Fernbach Award Gordon Bell 2014 IEEE Computer Society Seymour Cray Computer Engineering Award The Kennedy Award is presented by ACM President Alexander L. Wolf and Computer Society President Dejan S. Milojičić. The IEEE Computer Society Seymour Cray and Sidney Fernbach Awards are presented by 2014 IEEE Computer Society President Dejan S. Milojičić. The 2014 ACM/IEEE Computer Society Ken Kennedy Award ACM/IEEE Computer Society Ken Kennedy Award The Ken Kennedy Award was established in memory of Ken Kennedy, the founder of Rice University’s nationally ranked computer science program and one of the world’s foremost experts on high-performance computing. The award consists of a certificate and a $5,000 honorarium and is awarded jointly by the ACM and the IEEE Computer Society for outstanding contributions to programmability or productivity in high-performance computing together with significant community service or mentoring contributions. http://awards.acm.org http://computer.org/awards PREVIOUS RECIPIENTS — ACM/IEEE COMPUTER SOCIETY KEN KENNEDY AWARD 2013 - Jack Dongarra 2012 - Mary Lou Soffa 2011 - Susan L. Graham 2010 - David Kuck 2009 - Francine Berman 2014 ACM/IEEE COMPUTER SOCIETY KEN KENNEDY AWARD SUBCOMMITTEE Mary Hall, University of Utah, Chair David Rosenblum, National University of Randy Allen, National Instruments Singapore Keith Cooper, Rice University Valentina Salapura, IBM Susan Graham, University of California, Berkeley* David Padua, University of Illinois at Urbana- Champaign *Previous recipient Charles E. Leiserson 2014 ACM/IEEE Computer Society Ken Kennedy Award “For enduring influence on parallel computing systems and their adoption into mainstream use through scholarly research and development and for distinguished mentoring of computer science leaders and students.” harles E. Leiserson received a B.S. from Yale University and a Ph.D. from Carnegie Mellon University. He is a Professor of Computer Science and Engineering in MIT’s C Department of Electrical Engineering and Computer Science and head of the Supertech research group in MIT’s Computer Science and Artificial Intelligence Laboratory. Leiserson’s research centers on the theory of parallel computing, especially as it relates to engineering reality. He coauthored the first paper on systolic architectures, invented the retiming method of digital-circuit optimization, and introduced the notion of cache- oblivious algorithms. At Thinking Machines, he designed and led the implementation of the network architecture for the Connection Machine Model CM-5 Supercomputer. As director of system architecture at Akamai, he led the engineering team that developed a worldwide content-distribution network. His Cilk multithreaded programming system featured the first provably efficient work-stealing scheduler. Leiserson has made numerous contributions to computer science education as well. He is perhaps best known as coauthor of the textbook, Introduction to Algorithms (MIT Press), currently in its third edition and one of the most cited publications in all of computer science. For many years, Leiserson headed the computer science program for the Singapore-MIT Alliance, one of the first distance-education collaborations. His annual workshop, “Leadership Skills for Engineering and Science Faculty,” has enriched hundreds of faculty at MIT and around the world. He was the founding workshop chair for MIT’s Undergraduate Practice Opportunities Program (UPOP), which teaches sophomores how to leverage their technical skills in professional environments. Leiserson is a Margaret MacVicar Faculty Fellow at MIT, an ACM Fellow, an AAAS Fellow, and a senior member of IEEE and SIAM. He was the 2014 IEEE Computer Society Taylor L. Booth Education Award recipient and co-recipient of the 2013 ACM Paris Kanellakis Theory and Practice Award. The 2014 IEEE Computer Society Sidney Fernbach Award The Sidney Fernbach Award The Sidney Fernbach Award was established in 1992 by the Board of Governors of the IEEE Computer Society. It honors the memory of the late Dr. Sidney Fernbach, one of the pioneers in the development and application of high performance computers for the solution of large computational problems. The award, which consists of a certificate and a $2,000 honorarium, is presented annually to an individual for “an outstanding contribution in the application of high performance computers using innovative approaches.” http://computer.org/awards PREVIOUS RECIPIENTS—SIDNEY FERNBACH AWARD 2013 - Christopher R. Johnson 2003 - Jack J. Dongarra 2012 - Laxmikant V. Kale 2002 - Robert Harrison 2012 - Klaus Schulten 2000 - Stephen W. Attaway 2011 - Cleve Moler 1999 - Michael L. Norman 2010 - James W. Demmel 1998 - Phillip Collela 2009 - Roberto Car and Michele Parrinello 1997 - Charbel Farhat 2008 - William D. Gropp 1996 - Gary A. Glatzmaier 2007 - David E. Keyes 1995 - Paul R. Woodward 2006 - Edward Seidel 1994 - Charles S. Peskin 2005 - John B. Bell 1993 - David H. Bailey 2004 - Marsha Berger 2014 SIDNEY FERNBACH AWARD SUBCOMMITTEE Horst Simon (Chair), Lawrence Berkeley National Kengo Nakajima, University Of Tokyo Laboratory Michael Norman, San Diego Arndt Bode, Technische Universität München Supercomputer Center* Dona Crawford, Lawrence Livermore National Klaus Schulten, University of Illinois, Laboratory Urbana-Champaign* Candace Culhane, University of Maryland Edward Seidel, University of Illinois, Alan Gara, Intel Corporation Urbana-Champaign* Christopher Johnson, University Of Utah* John Shalf, Lawrence Berkeley National Laxmikant (Sanjay) Kale, University of Illinois, Laboratory Urbana-Champaign* Marc Snir, Argonne National Laboratory Steven Keckler, nVidia Corporation Steven Wallach, Convey Computer Peter Kogge, University of Notre Dame Yutong Lu, National University of Defense Technology, NUDT *Previous recipient Satoshi Matsuoka 2014 IEEE Computer Society Sidney Fernbach Award “For work on software systems for high-performance computing on advanced infrastructural platforms, large-scale supercomputers, and heterogeneous GPU/CPU supercomputers.” atoshi Matsuoka has been a Full Professor at the Global Scientific Information and Computing Center (GSIC), a Japanese national supercomputing center hosted Sby the Tokyo Institute of Technology, since 2001. He received his Ph. D. from the University of Tokyo in 1993. He is the leader of the TSUBAME series of supercomputers, including TSUBAME2.0 which was the first supercomputer in Japan to exceed Petaflop performance and became the 4th fastest in the world on the Top500 in Nov. 2010, as well as the recent TSUBAME-KFC becoming #1 in the world for power efficiency for both the Green 500 and Green Graph 500 lists in Nov. 2013. He is also currently leading several major supercomputing research projects, such as the MEXT Green Supercomputing, JSPS Billion- Scale Supercomputer Resilience, as well as the JST-CREST Extreme Big Data. He has written over 500 articles according to Google Scholar, and chaired many ACM/IEEE conferences, including the Technical Paper Chair at SC (Supercomputing) ‘09, the Community Program Chair at SC’11, and the overall Technical Program Chair at SC’13. He is a Fellow of the ACM and European ISC, and has won many awards, including the JSPS Prize from the Japan Society for Promotion of Science in 2006, awarded by his Highness Prince Akishino, the ACM Gordon Bell Prize in 2011, and the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology in 2012. The 2014 IEEE Computer Society Seymour Cray Computer Engineering Award The Seymour Cray Computer Engineering Award The Seymour Cray Computer Engineering Award was established in late 1997 by the Board of Governors of the IEEE Computer Society. The award honors the memory of the late Seymour Cray, an electrical engineer and supercomputer architect. The award is presented annually to an individual for “an outstanding contribution in the application of high performance computers using innovative approaches.” To be considered for this award, the contribution must have had a major impact on the supercomputing industry. The award consists of a crystal memento, illuminated certificate and a $10,000 honorarium awarded to recognize innovative contributions to high performance computing systems that best exemplify the creative spirit demonstrated by Seymour Cray. The award was endowed by Silicon Graphics, Inc., in honor of Seymour Cray. http://computer.org/awards PREVIOUS RECIPIENTS—SEYMOUR CRAY COMPUTER ENGINEERING AWARD 2013 - Marc Snir 2005 - Steven L. Scott 2012 - Peter M. Kogge 2004 - William J. Dally 2011 - Charles L. Seitz 2003 - Burton J. Smith 2010 - Alan Gara 2002 - Monty M. Denneau 2009 - Kenichi Miura 2001 - John L. Hennessy 2008 - Steve Wallach 2000 - Glen J. Culler 2007 - Kenneth E. Batcher 1999 - John Cocke 2006 - Tadashi Watanabe 2014 SEYMOUR CRAY AWARD SUBCOMMITTEE Horst Simon (Chair), Lawrence Berkeley National Michael Norman, San Diego Laboratory Supercomputer Center Arndt Bode, Technische Universität München Klaus Schulten, University of Illinois, Dona Crawford, Lawrence Livermore National Urbana-Champaign Laboratory Edward Seidel, University of Illinois,
Recommended publications
  • Tarjan Transcript Final with Timestamps
    A.M. Turing Award Oral History Interview with Robert (Bob) Endre Tarjan by Roy Levin San Mateo, California July 12, 2017 Levin: My name is Roy Levin. Today is July 12th, 2017, and I’m in San Mateo, California at the home of Robert Tarjan, where I’ll be interviewing him for the ACM Turing Award Winners project. Good afternoon, Bob, and thanks for spending the time to talk to me today. Tarjan: You’re welcome. Levin: I’d like to start by talking about your early technical interests and where they came from. When do you first recall being interested in what we might call technical things? Tarjan: Well, the first thing I would say in that direction is my mom took me to the public library in Pomona, where I grew up, which opened up a huge world to me. I started reading science fiction books and stories. Originally, I wanted to be the first person on Mars, that was what I was thinking, and I got interested in astronomy, started reading a lot of science stuff. I got to junior high school and I had an amazing math teacher. His name was Mr. Wall. I had him two years, in the eighth and ninth grade. He was teaching the New Math to us before there was such a thing as “New Math.” He taught us Peano’s axioms and things like that. It was a wonderful thing for a kid like me who was really excited about science and mathematics and so on. The other thing that happened was I discovered Scientific American in the public library and started reading Martin Gardner’s columns on mathematical games and was completely fascinated.
    [Show full text]
  • Communications of the Acm
    COMMUNICATIONS CACM.ACM.ORG OF THEACM 11/2014 VOL.57 NO.11 Scene Understanding by Labeling Pixels Evolution of the Product Manager The Data on Diversity On Facebook, Most Ties Are Weak Keeping Online Reviews Honest Association for Computing Machinery tvx-full-page.pdf-newest.pdf 1 11/10/2013 12:03 3-5 JUNE, 2015 BRUSSELS, BELGIUM Course and Workshop C proposals by M 15 November 2014 Y CM Paper Submissions by MY 12 January 2015 CY CMY K Work in Progress, Demos, DC, & Industrial Submissions by 2 March 2015 Welcoming Submissions on Content Production Systems & Infrastructures Devices & Interaction Techniques Experience Design & Evaluation Media Studies Data Science & Recommendations Business Models & Marketing Innovative Concepts & Media Art TVX2015.COM [email protected] ACM Books M MORGAN& CLAYPOOL &C PUBLISHERS Publish your next book in the ACM Digital Library ACM Books is a new series of advanced level books for the computer science community, published by ACM in collaboration with Morgan & Claypool Publishers. I’m pleased that ACM Books is directed by a volunteer organization headed by a dynamic, informed, energetic, visionary Editor-in-Chief (Tamer Özsu), working closely with a forward-looking publisher (Morgan and Claypool). —Richard Snodgrass, University of Arizona books.acm.org ACM Books ◆ will include books from across the entire spectrum of computer science subject matter and will appeal to computing practitioners, researchers, educators, and students. ◆ will publish graduate level texts; research monographs/overviews of established and emerging fields; practitioner-level professional books; and books devoted to the history and social impact of computing. ◆ will be quickly and attractively published as ebooks and print volumes at affordable prices, and widely distributed in both print and digital formats through booksellers and to libraries and individual ACM members via the ACM Digital Library platform.
    [Show full text]
  • Here I Led Subcommittee Reports Related to Data-Intensive Science and Post-Moore Computing) and in CRA’S Board of Directors Since 2015
    Vivek Sarkar Curriculum Vitae Contents 1 Summary 2 2 Education 3 3 Professional Experience 3 3.1 2017-present: College of Computing, Georgia Institute of Technology . 3 3.2 2007-present: Department of Computer Science, Rice University . 5 3.3 1987-2007: International Business Machines Corporation . 7 4 Professional Awards 11 5 Research Awards 12 6 Industry Gifts 15 7 Graduate Student and Other Mentoring 17 8 Professional Service 19 8.1 Conference Committees . 20 8.2 Advisory/Award/Review/Steering Committees . 25 9 Keynote Talks, Invited Talks, Panels (Selected) 27 10 Teaching 33 11 Publications 37 11.1 Refereed Conference and Journal Publications . 37 11.2 Refereed Workshop Publications . 51 11.3 Books, Book Chapters, and Edited Volumes . 58 12 Patents 58 13 Software Artifacts (Selected) 59 14 Personal Information 60 Page 1 of 60 01/06/2020 1 Summary Over thirty years of sustained contributions to programming models, compilers and runtime systems for high performance computing, which include: 1) Leading the development of ASTI during 1991{1996, IBM's first product compiler component for optimizing locality, parallelism, and the (then) new FORTRAN 90 high-productivity array language (ASTI has continued to ship as part of IBM's XL Fortran product compilers since 1996, and was also used as the foundation for IBM's High Performance Fortran compiler product); 2) Leading the research and development of the open source Jikes Research Virtual Machine at IBM during 1998{2001, a first-of-a-kind Java Virtual Machine (JVM) and dynamic compiler implemented
    [Show full text]
  • Annual Report
    ANNUAL REPORT 2019FISCAL YEAR ACM, the Association for Computing Machinery, is an international scientific and educational organization dedicated to advancing the arts, sciences, and applications of information technology. Letter from the President It’s been quite an eventful year and challenges posed by evolving technology. for ACM. While this annual Education has always been at the foundation of exercise allows us a moment ACM, as reflected in two recent curriculum efforts. First, “ACM’s mission to celebrate some of the many the ACM Task Force on Data Science issued “Comput- hinges on successes and achievements ing Competencies for Undergraduate Data Science Cur- creating a the Association has realized ricula.” The guidelines lay out the computing-specific over the past year, it is also an competencies that should be included when other community that opportunity to focus on new academic departments offer programs in data science encompasses and innovative ways to ensure at the undergraduate level. Second, building on the all who work in ACM remains a vibrant global success of our recent guidelines for 4-year cybersecu- the computing resource for the computing community. rity curricula, the ACM Committee for Computing Edu- ACM’s mission hinges on creating a community cation in Community Colleges created a related cur- and technology that encompasses all who work in the computing and riculum targeted at two-year programs, “Cybersecurity arena” technology arena. This year, ACM established a new Di- Curricular Guidance for Associate-Degree Programs.” versity and Inclusion Council to identify ways to create The following pages offer a sampling of the many environments that are welcoming to new perspectives ACM events and accomplishments that occurred over and will attract an even broader membership from the past fiscal year, none of which would have been around the world.
    [Show full text]
  • Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University
    Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University. Linda A. Cicero/Stanford News Service. Whitfield Diffie Martin E. Hellman ernment–private sector relations, and attracts billions of Whitfield Diffie, former chief security officer of Sun Mi- dollars in research and development,” said ACM President crosystems, and Martin E. Hellman, professor emeritus Alexander L. Wolf. “In 1976, Diffie and Hellman imagined of electrical engineering at Stanford University, have been a future where people would regularly communicate awarded the 2015 A. M. Turing Award of the Association through electronic networks and be vulnerable to having for Computing Machinery for their critical contributions their communications stolen or altered. Now, after nearly to modern cryptography. forty years, we see that their forecasts were remarkably Citation prescient.” The ability for two parties to use encryption to commu- “Public-key cryptography is fundamental for our indus- nicate privately over an otherwise insecure channel is try,” said Andrei Broder, Google Distinguished Scientist. fundamental for billions of people around the world. On “The ability to protect private data rests on protocols for a daily basis, individuals establish secure online connec- confirming an owner’s identity and for ensuring the integ- tions with banks, e-commerce sites, email servers, and the rity and confidentiality of communications. These widely cloud. Diffie and Hellman’s groundbreaking 1976 paper, used protocols were made possible through the ideas and “New Directions in Cryptography,” introduced the ideas of methods pioneered by Diffie and Hellman.” public-key cryptography and digital signatures, which are Cryptography is a practice that facilitates communi- the foundation for most regularly used security protocols cation between two parties so that the communication on the Internet today.
    [Show full text]
  • Curriculum Vitae
    Massachusetts Institute of Technology School of Engineering Faculty Personnel Record Date: April 1, 2020 Full Name: Charles E. Leiserson Department: Electrical Engineering and Computer Science 1. Date of Birth November 10, 1953 2. Citizenship U.S.A. 3. Education School Degree Date Yale University B. S. (cum laude) May 1975 Carnegie-Mellon University Ph.D. Dec. 1981 4. Title of Thesis for Most Advanced Degree Area-Efficient VLSI Computation 5. Principal Fields of Interest Analysis of algorithms Caching Compilers and runtime systems Computer chess Computer-aided design Computer network architecture Digital hardware and computing machinery Distance education and interaction Fast artificial intelligence Leadership skills for engineering and science faculty Multicore computing Parallel algorithms, architectures, and languages Parallel and distributed computing Performance engineering Scalable computing systems Software performance engineering Supercomputing Theoretical computer science MIT School of Engineering Faculty Personnel Record — Charles E. Leiserson 2 6. Non-MIT Experience Position Date Founder, Chairman of the Board, and Chief Technology Officer, Cilk Arts, 2006 – 2009 Burlington, Massachusetts Director of System Architecture, Akamai Technologies, Cambridge, 1999 – 2001 Massachusetts Shaw Visiting Professor, National University of Singapore, Republic of 1995 – 1996 Singapore Network Architect for Connection Machine Model CM-5 Supercomputer, 1989 – 1990 Thinking Machines Programmer, Computervision Corporation, Bedford, Massachusetts 1975
    [Show full text]
  • Finding Rising Stars in Co-Author Networks Via Weighted Mutual Influence
    Finding Rising Stars in Co-Author Networks via Weighted Mutual Influence Ali Daud a,b Naif Radi Aljohani a Rabeeh Ayaz Abbasi a,c a Faculty of Computing and a Faculty of Computing and c Department of Computer Science, Information Technology, King Information Technology, King Quaid-i-Azam University, Islamabad, Abdulaziz University, Jeddah, Saudi Abdulaziz University, Jeddah, Saudi Pakistan Arabia Arabia [email protected] [email protected] [email protected] b b d Zahid Rafique Tehmina Amjad Hussain Dawood b Department of Computer Science b Department of Computer Science d Faculty of Computing and and Software Engineering, and Software Engineering, Information Technology, University International Islamic University, International Islamic University, of Jeddah, Jeddah, Saudi Arabia Islamabad, Pakistan Islamabad, Pakistan [email protected] [email protected] [email protected] a Khaled H. Alyoubi a Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia [email protected] ABSTRACT KEYWORDS Finding rising stars is a challenging and interesting task which is Bibliographic databases; Citations; Author Order; Rising Stars; Mutual being investigated recently in co-author networks. Rising stars are Influence; Co-Author Networks authors who have a low research profile in the start of their career but may become experts in the future. This paper introduces a new method Weighted Mutual Influence Rank (WMIRank) for finding 1. INTRODUCTION rising stars. WMIRank exploits influence of co-authors’ citations, The rapid evolution of scientific research has created large order of appearance and publication venues. Comprehensive volumes of publications every year, and is expected to continue in experiments are performed to analyze the performance of near future [21].
    [Show full text]
  • Moshe Y. Vardi
    MOSHE Y. VARDI Address Office Home Department of Computer Science 4515 Merrie Lane Rice University Bellaire, TX 77401 P.O.Box 1892 Houston, TX 77251-1892 Tel: (713) 348-5977 Tel: (713) 665-5900 Fax: (713) 348-5930 Fax: (713) 665-5900 E-mail: [email protected] URL: http://www.cs.rice.edu/∼vardi Research Interests Applications of logic to computer science: • database systems • complexity theory • multi-agent systems • specification and verification of hardware and software Education Sept. 1974 B.Sc. in Physics and Computer Science (Summa cum Laude), Bar-Ilan University, Ramat Gan, Israel May 1980 M.Sc. in Computer Science, The Feinberg Graduate School, The Weizmann Insti- tute of Science, Rehovoth, Israel Thesis: Axiomatization of Functional and Join Dependencies in the Relational Model. Advisors: Prof. C. Beeri (Hebrew University) Prof. P. Rabinowitz Sept 1981 Ph.D. in Computer Science, Hebrew University, Jerusalem, Israel Thesis: The Implication Problem for Data Dependencies in the Relational Model. Advisor: Prof. C. Beeri Professional Experience Nov. 1972 – June 1973 Teaching Assistant, Dept. of Mathematics, Bar-Ilan University. Course: Introduction to computing. 1 Nov. 1978 – June 1979 Programmer, The Weizmann Institute of Science. Assignments: implementing a discrete-event simulation package and writing input-output routines for a database management system. Feb. 1979 – Oct. 1980 Research Assistant, Inst. of Math. and Computer Science, The Hebrew University of Jerusalem. Research subject: Theory of data dependencies. Nov. 1980 – Aug. 1981 Instructor, Inst. of Math. and Computer Science, The Hebrew University of Jerusalem. Course: Advanced topics in database theory. Sep. 1981 – Aug. 1983 Postdoctoral Scholar, Dept. of Computer Science, Stanford Univer- sity.
    [Show full text]
  • Michael Oser Rabin Automata, Logic and Randomness in Computation
    Michael Oser Rabin Automata, Logic and Randomness in Computation Luca Aceto ICE-TCS, School of Computer Science, Reykjavik University Pearls of Computation, 6 November 2015 \One plus one equals zero. We have to get used to this fact of life." (Rabin in a course session dated 30/10/1997) Thanks to Pino Persiano for sharing some anecdotes with me. Luca Aceto The Work of Michael O. Rabin 1 / 16 Michael Rabin's accolades Selected awards and honours Turing Award (1976) Harvey Prize (1980) Israel Prize for Computer Science (1995) Paris Kanellakis Award (2003) Emet Prize for Computer Science (2004) Tel Aviv University Dan David Prize Michael O. Rabin (2010) Dijkstra Prize (2015) \1970 in computer science is not classical; it's sort of ancient. Classical is 1990." (Rabin in a course session dated 17/11/1998) Luca Aceto The Work of Michael O. Rabin 2 / 16 Michael Rabin's work: through the prize citations ACM Turing Award 1976 (joint with Dana Scott) For their joint paper \Finite Automata and Their Decision Problems," which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. ACM Paris Kanellakis Award 2003 (joint with Gary Miller, Robert Solovay, and Volker Strassen) For \their contributions to realizing the practical uses of cryptography and for demonstrating the power of algorithms that make random choices", through work which \led to two probabilistic primality tests, known as the Solovay-Strassen test and the Miller-Rabin test". ACM/EATCS Dijkstra Prize 2015 (joint with Michael Ben-Or) For papers that started the field of fault-tolerant randomized distributed algorithms.
    [Show full text]
  • Two Students Named Recipients of 2014 ACM/IEEE-CS George Michael Memorial HPC Fellowships
    FOR IMMEDIATE RELEASE Contacts: Virginia Gold Margo McCall 212-626-0505 714-816-2182 [email protected] [email protected] ACM AND IEEE COMPUTER SOCIETY RECOGNIZE CHARLES E. LEISERSON FOR ADVANCES IN PARALLEL COMPUTING SYSTEMS MIT Professor Developed Cilk Multithreaded Programming Technology NEW YORK, September 12, 2014 -- Charles E. Leiserson of Massachusetts Institute of Technology (MIT) will receive the 2014 ACM-IEEE Computer Society Ken Kennedy Award for his influence on parallel computing systems and their adoption into mainstream use through scholarly research and development. He was also cited for his mentoring of computer science leaders and students. Leiserson introduced the notion of cache-oblivious algorithms, which can exploit the memory hierarchy near optimally despite having no tuning parameters for cache size or cache-line length. He also developed the Cilk multithreaded programming technology, and led the development of several Cilk-based parallel chess-playing programs which won numerous prizes in international competition. The award will be presented at the SC14 supercomputing conference on Tuesday, November 18 in New Orleans. The coauthor of “Introduction to Algorithms,” one of computer science’s most cited publications, Leiserson is also the creator of MIT undergraduate courses on algorithms and on discrete mathematics for computer science. He headed the computer science program for the pioneering Singapore-MIT Alliance distance- education program and developed MIT’s undergraduate class on software performance engineering, which teaches parallel programming as one of several techniques for writing fast code. Leiserson’s annual workshop on Leadership Skills for Engineering and Science Faculty has educated hundreds of faculty at MIT and around the world in the human issues involved in leading technical teams in academia.
    [Show full text]
  • Who Owns 3D Scans of Historic Sites? Three-Dimensional Scanning Can Be Used to Protect Or Rebuild Historic Structures, but Who Owns That Digital Data?
    news Society | DOI:10.1145/3290410 Esther Shein Who Owns 3D Scans of Historic Sites? Three-dimensional scanning can be used to protect or rebuild historic structures, but who owns that digital data? IGH ATOP THE Thomas Jeffer- son Memorial in Washing- ton, D.C., is a layer of biofilm covering the dome, darken- ing and discoloring it. Bio- Hfilm is “a colony of microscopic organ- isms that adheres to stone surfaces,” according to the U.S. National Park Ser- vice, which needed to get a handle on its magnitude to get an accurate cost estimate for the work to remove it. Enter CyArk, a non-profit organi- zation that uses three-dimensional (3D) laser scanning and photogram- metry to digitally record and archive some of the world’s most significant cultural artifacts and structures. CyArk spent a week covering “every inch” of the dome, processed the data, and returned a set of engineer- ing drawings to the Park Service “to quantify down to the square inch how much biofilm is on the monument,’’ says CEO John Ristevski. “This is an example of where data is being used to solve a problem,” to help preserve a historical structure, he says. Ristevski says the Park Service was not charged for the data, and the work CyArk did was funded by individual Capturing photogrammetric data for the digital reconstruction of a badly damaged temple in donors in the San Francisco Bay Area, the ancient city of Bagan, in central Myanmar. where the company is located. CyArk is one of several organiza- data to build extremely precise 3D to use them to raise awareness of their tions using 3D scanning to help pro- models, says Yves Ubelmann, an ar- historical sites,’’ he says.
    [Show full text]
  • R00456--FM Getting up to Speed
    GETTING UP TO SPEED THE FUTURE OF SUPERCOMPUTING Susan L. Graham, Marc Snir, and Cynthia A. Patterson, Editors Committee on the Future of Supercomputing Computer Science and Telecommunications Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Gov- erning Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engi- neering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for ap- propriate balance. Support for this project was provided by the Department of Energy under Spon- sor Award No. DE-AT01-03NA00106. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the organizations that provided support for the project. International Standard Book Number 0-309-09502-6 (Book) International Standard Book Number 0-309-54679-6 (PDF) Library of Congress Catalog Card Number 2004118086 Cover designed by Jennifer Bishop. Cover images (clockwise from top right, front to back) 1. Exploding star. Scientific Discovery through Advanced Computing (SciDAC) Center for Supernova Research, U.S. Department of Energy, Office of Science. 2. Hurricane Frances, September 5, 2004, taken by GOES-12 satellite, 1 km visible imagery. U.S. National Oceanographic and Atmospheric Administration. 3. Large-eddy simulation of a Rayleigh-Taylor instability run on the Lawrence Livermore National Laboratory MCR Linux cluster in July 2003.
    [Show full text]