R00456--FM Getting up to Speed
Total Page:16
File Type:pdf, Size:1020Kb
GETTING UP TO SPEED THE FUTURE OF SUPERCOMPUTING Susan L. Graham, Marc Snir, and Cynthia A. Patterson, Editors Committee on the Future of Supercomputing Computer Science and Telecommunications Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Gov- erning Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engi- neering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for ap- propriate balance. Support for this project was provided by the Department of Energy under Spon- sor Award No. DE-AT01-03NA00106. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the organizations that provided support for the project. International Standard Book Number 0-309-09502-6 (Book) International Standard Book Number 0-309-54679-6 (PDF) Library of Congress Catalog Card Number 2004118086 Cover designed by Jennifer Bishop. Cover images (clockwise from top right, front to back) 1. Exploding star. Scientific Discovery through Advanced Computing (SciDAC) Center for Supernova Research, U.S. Department of Energy, Office of Science. 2. Hurricane Frances, September 5, 2004, taken by GOES-12 satellite, 1 km visible imagery. U.S. National Oceanographic and Atmospheric Administration. 3. Large-eddy simulation of a Rayleigh-Taylor instability run on the Lawrence Livermore National Laboratory MCR Linux cluster in July 2003. The relative abun- dance of the heavier elements in our universe is largely determined by fluid insta- bilities and turbulent mixing inside violently exploding stars. 4. Three-dimensional model of the structure of a ras protein. Human Genome Program, U.S. Department of Energy, Office of Science. 5. Test launch of Minuteman intercontinental ballistic missile. Vandenberg Air Force Base. 6. A sample of liquid deuterium subjected to a supersonic impact, showing the formation of a shock front on the atomic scale. The simulation involved 1,320 atoms and ran for several days on 2,640 processors of Lawrence Livermore Na- tional Laboratory’s ASCI White. It provided an extremely detailed picture of the formation and propagation of a shock front on the atomic scale. Accelerated Stra- tegic Computing Initiative (ASCI), Department of Energy, Lawrence Livermore National Laboratory. 7. Isodensity surfaces of a National Ignition Facility ignition capsule bound- ing the shell, shown at 200 picosec (left), 100 picosec (center), and near ignition time (right). An example of ASCI White three-dimensional computer simulations based on predictive physical models. ASCI, Lawrence Livermore National Labo- ratory. Copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334- 3313 in the Washington metropolitan area; Internet, http://www.nap.edu Copyright 2005 by the National Academy of Sciences. All rights reserved. Printed in the United States of America The National Academy of Sciences is a private, nonprofit, self-perpetuating soci- ety of distinguished scholars engaged in scientific and engineering research, dedi- cated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its mem- bers, sharing with the National Academy of Sciences the responsibility for advis- ing the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Insti- tute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sci- ences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal gov- ernment. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the Na- tional Academy of Sciences and the National Academy of Engineering in provid- ing services to the government, the public, and the scientific and engineering com- munities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council. www.national-academies.org COMMITTEE ON THE FUTURE OF SUPERCOMPUTING SUSAN L. GRAHAM, University of California, Berkeley, Co-chair MARC SNIR, University of Illinois at Urbana-Champaign, Co-chair WILLIAM J. DALLY, Stanford University JAMES W. DEMMEL, University of California, Berkeley JACK J. DONGARRA, University of Tennessee, Knoxville, and Oak Ridge National Laboratory KENNETH S. FLAMM, University of Texas, Austin MARY JANE IRWIN, Pennsylvania State University CHARLES KOELBEL, Rice University BUTLER W. LAMPSON, Microsoft Corporation ROBERT F. LUCAS, University of Southern California PAUL C. MESSINA, Distinguished senior computer scientist, Consultant JEFFREY M. PERLOFF, University of California, Berkeley WILLIAM H. PRESS, Los Alamos National Laboratory ALBERT J. SEMTNER, Naval Postgraduate School SCOTT STERN, Northwestern University SHANKAR SUBRAMANIAM, University of California, San Diego LAWRENCE C. TARBELL, JR., Technology Futures Office, Eagle Alliance STEVEN J. WALLACH, Chiaro Networks Staff CYNTHIA A. PATTERSON, Study Director PHIL HILLIARD, Research Associate (through May 2004) MARGARET MARSH HUYNH, Senior Program Assistant HERBERT S. LIN, Senior Scientist iv COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD DAVID LIDDLE, U.S. Venture Partners, Co-chair JEANNETTE M. WING, Carnegie Mellon University, Co-chair ERIC BENHAMOU, Benhamou Global Ventures, LLC DAVID D. CLARK, Massachusetts Institute of Technology, CSTB Chair Emeritus WILLIAM DALLY, Stanford University MARK E. DEAN, IBM Almaden Research Center DEBORAH ESTRIN, University of California, Los Angeles JOAN FEIGENBAUM, Yale University HECTOR GARCIA-MOLINA, Stanford University KEVIN KAHN, Intel Corporation JAMES KAJIYA, Microsoft Corporation MICHAEL KATZ, University of California, Berkeley RANDY H. KATZ, University of California, Berkeley WENDY A. KELLOGG, IBM T.J. Watson Research Center SARA KIESLER, Carnegie Mellon University BUTLER W. LAMPSON, Microsoft Corporation, CSTB Member Emeritus TERESA H. MENG, Stanford University TOM M. MITCHELL, Carnegie Mellon University DANIEL PIKE, GCI Cable and Entertainment ERIC SCHMIDT, Google Inc. FRED B. SCHNEIDER, Cornell University WILLIAM STEAD, Vanderbilt University ANDREW J. VITERBI, Viterbi Group, LLC CHARLES N. BROWNSTEIN, Director KRISTEN BATCH, Research Associate JENNIFER M. BISHOP, Program Associate JANET BRISCOE, Manager, Program Operations JON EISENBERG, Senior Program Officer RENEE HAWKINS, Financial Associate MARGARET MARSH HUYNH, Senior Program Assistant HERBERT S. LIN, Senior Scientist LYNETTE I. MILLETT, Senior Program Officer JANICE SABUDA, Senior Program Assistant GLORIA WESTBROOK, Senior Program Assistant BRANDYE WILLIAMS, Staff Assistant For more information on CSTB, see its Web site at <http://www.cstb.org>, write to CSTB, National Research Council, 500 Fifth Street, N.W., Washington, DC 20001, call (202) 334-2605, or e-mail the CSTB at [email protected]. v Preface igh-performance computing is important in solving complex problems in areas from climate and biology to national security. H Several factors have led to the recent reexamination of the ratio- nale for federal investment in research and development in support of high-performance computing, including (1) continuing changes in the various component technologies and their markets, (2) the evolution of the computing market, particularly the high-end supercomputing seg- ment, (3) experience with several systems using the clustered processor architecture, and (4) the evolution of the problems, many of them mis- sion-driven, for which supercomputers are used. The Department of Energy’s (DOE’s) Office of Science expressed an interest in sponsoring a study by the Computer Science and Telecommu- nications Board (CSTB) of the National Research Council (NRC) that would assess the