Computing History: a Personal and Industry View

Total Page:16

File Type:pdf, Size:1020Kb

Computing History: a Personal and Industry View or attempted designs; seven reaIly suc- ceeded, about 20 are still trying, and a COMPUTING HISTORY: A whoIt flock are no longer with us. including American Computet, Atron, BIT, and Viatron. With some under- PERSONAL AND INDUSTRY standing of the historic generational patterns my goal was to get DEC into VIEW/GORDON BELL large scale integrated circuits and to establish the YAX line as a new stan- lis. and Herbert Simon wrote a letter to dard. And ironically, this year 20 years Science and identified computer sci- after the first PDP-8 was built, sales of ence. The next steps, what we now call the machine were higher than ever “the third and fourth generations’’ weren’t at all clear. At Carnegie, Allen Newel1 and I collected materials and years objects from past machines to build Ironically, his year 20 theories. This resulted in a book en- 1 der he fint PDP$ was titled Computer Srructuras that in- fluenced at least two generations of built des of the muchine computer architects. The concepts of the DEC Unibus and general registers were higher hnever. came from this work. Other Carnegie alumni extended and implemented thae ideas in subsequent (and future) since it is implemented on a single chip DEC computers. These developments and embedded in a word processor. came from a deep knowIedgc of past Now one of my goals is to con- computers, and how they were used sider not just the development of a sin- and gave some insights about the fu- gle company, but of the entire industry ture trajectory of computer evolution. -and not just archlrKture but pro- ach time I invest “in the past” It In 1972, when I returned to Dig- grammers and users. To this end, I has future payoff. ital, the third generation of computing, have been part of establishing The EThe first time that I invested in based on the integrated circuir, was in Computet Museum for everyone, The learning was in 1966. I went on leave full swing. While DEC had been a1- Museum came about through the gen- from DEC to borne a professor at most alone buiPding minis in the sec- erous sponsorship of DEC and Ken Carnegie Tech to learn about computer ond generation, the technological Olsen. science. Even though I had already barriers to building computers had helped develop the first minicomputer been lowered with the IC. A company The Role of the Computer Museum [the PDP-8) and the first commercial had only to understand packaging, Opened in Boston in 1984, The timesharing system (the PDP-6). in- logic design, peripheral interface de- Computer Museum has on display the dustry was unconcerned about the sign, and construction of software first interactive space game, “science” of CQmpUthg. components to start in the business. By Spacewar!; the first personal corn- In 1967, Allen Newell. Alan Per- 1970, about 100 companies had formed puter, the LINC. and the first mail-or- VOlUMf 10 NUMBER ll/CREATlVE COMWTING 175 COMPUTERS & EDUCATION der home-built machine, the Altair. Dozens of tmmplete industries have ml B national scale I have four con. The Computer Museum is designed to bccn fQI“n@ within 8 half dmstratr: cerns about tbi restructuring. help visiton understand the evolution a Chips: microcomputers, periphcr- First, the valne of the companies of computing. Computer generations, dS, IIIeXIlQieS. appears to be far larger than any poten- marking lechnologica1 time, are the e Eleezro rnechanicals: power sup tial market. At #he beginning of 1984, mah orpizing principle. The new plies, disks, VO,enclwures. 123 workstation companies had a technologies, staftup companies, and e Operating systems: comunica- vduation of tens of billions d doIh new products of each germittion are tians, database access, human VO. with a total market of Iess than $10 bil- listed and displayed. e Languages: (eg. dozens of assun- lion. At mmt, there may bE room for I Every time 1 visit the museum, I blers for a gircn micro), fourth genera- dohfitst rate CompmiCS. get insight relevant to m current prob- tion languages. Second, while the cycle crab lem. A month ago while looking at the Generic applications: word pro- some innovations in computing, most Honeywell 116, a very eady IC mini- cessing spreadsheets. of the pducta do not improve computer, and comparing it with Data a ProTessional/diocipline applica- productivity. The $‘metoo” less costly General’s first Nova, id- about bard tions: general business, solutions really cost the user when the size, pins, and function jelled. I also obstrvtd that nearly all of the micros repeated, for the third time, the tirne- worn me~tt~rymanagement evolution path that began in 1960 with the Man- chester University Atlas in the early m’s, which we followed with the Decsystem 10 in the late Ws,and then again with minis in the mid-7O’s. IBM‘s path was about the mewith ThiB new technology parnits Inmy the 360/370 evolution arid its minis. more new computer struchrres than The Computer Museum is not just ever Mort including for me and my engjineer friends; a e btltypesofdesktoptcmhalssnd dom high schodl students came to an pbones. esoteric lecture OQ coding in the 1930’s PdIt and desktop mal given by Donald Davies of England’s computers, mrkstatbm and shared National Physical Laboratory. Asked cornputem. if they gat anything from it they re- a Supmicrm which replacc mini plied that they were going to use sume and mainframes while providing in- of the ideas on setting secure codes for creased reliability and pwFomanEc by thar school computer. replication. When I tour the Science Museum I Hybrid ~PUtw-kI~h~yb in London with my British friends, computers and switches. they often mounted anecdotes of bow With the vast supply of venture the exhibitions turned peopfe on to sci- CapitaI, d1 YOU need to establish a eom- ence and technology. NOW1 see the pny is a computer with a word same thing at The Computer Museum: processor and spreadsheetwA perpaual bright kids and curious adults have a motion machine: for crating ampa- pIace where they can Iarn how nies can be expressed in a Pascal-like computers got to ’be the way they me way: day. prudure VENTURE Until The Computer Museum was ENTREPRENEWR CYCLE established, there was no place where while greed and not ftar do the objects, films, and programs of the begla past were collected. The Computer write businem plan; Museum prov&s this for the present gel venture Furids; and future generations of engine, exit job; programmers, artists, and hacken who start new company; will make history. build prduct; sell product AVwtmtlwFwtm sell company;(for Using the Museum to review the 100 times sales) past, just as I did in the Ws at Car- venture funds: = that ~QU,like me, were strongly in- ncgit, B view emerges of the future liquidiiy; fluenced by your first computer and evolutionary path of computing. end The current computer industry is stratified by Twcl of integration and The restructuring of thc indwtry CornpIeteIy product fragmentd, offer- is good for individuals who both take ing the ultimate in entrepreneurism. the risks and create new products. But .
Recommended publications
  • What We Learned from the PDP-11
    ABSTRACT Gordon Bell, William Il. Strecker November 8, 1975 COMPUTER STRUCTURES: WHAT HAVE WE LEARNED FROM THE PDP-ll? Over the FDP-11’S six year life behave in a particular way? about 20,000 specimens have been Where does it get inputs? HOW built based on 10 species (models). does it formulate and solve Al though range was a design goal, problems? it was unquantified; the actual range has exceeded expectations 3. The rest of the DEC (5OO:l in memory size and system organization--this includes price]. The range has stressed the applications groups assoc ia ted baa ic mini (mall computer with market groups # sales, architecture along all dimensions. service and manufacturing. The marn PM.5 structure, i.e. the UNIBUS, has been adopted as a de 4. The user, who receives the facto standard of interconnection final OUtQUt. for many micro and minicomputer systems. The architectural Note, that if we assume that a experience gained in the design and QrOduc t is done sequentially, and use of the PDP-11 will be described each stage has a gestation time of in terms Of its environment about two years, it takes roughly (initial goals and constraints, eight years for an idea from basic technology, and the organization research to finally appear at the that designs, builds and user’s site. Other organizations distributes the machine). ala0 affect the design : competitors (they establish a deaign level and determine the product life): and government IsI 1.0 TNTRODUCTTON and standards. There are an ever increasing number Although one might think that of groups who feel compel led to computer architecture is the sole control all products bringing them determinant of a machine, it is all common norm : the merely the focal point for a government (“5) , testing groups such specification.
    [Show full text]
  • Gordon's Personal View of Personal Computing: Before the PC
    Gordon’s Personal View of Personal Computing: before the PC Vintage Computer Society 27 September 1998 Gordon Bell [email protected] http://www.research.microsoft.com/~gbell Apple II First personal computer Micral In the beginning: Manchester “Baby” ran the first program 22 June 1948 English Electric Deuce Console 1955 Whirlwind c1953 … 1st generation, 16-bit word; 4 KB memory; 8 K drum Whirlwind begot TX-O/TX-2 begot DEC PDP-1 Real time, first compiler, ECAD, text editor Whirlwind console, drum, 1 Kw core SAGE Control Room c 1962. Whirlwind used for first experiments. SAGE (Semi-Automatic Ground Environment) Operator Console TX-0 Console c1959… one of the first transistorized personal computers Speech, handwriting recognition, neuro data analysis, etc. Interactive editors, debuggers, etc. MIT Speech group with TX-0, c1959. DEC Computer before PDP-11 1957 1961 1963 DEC PDP-1 c1961 Wes Clark & LINC c1962: Personal computers for bio-medical research PDP-5 c1964: PDP-8 predecessor Process control, real time experiments. Fortran ran in 4 K, 12 bit words Gbell with LINC and PDP-8 c1965 PDP-8: first mini First OEM computer. OS/8 (from timesharing) begot RT-11 begot CPM PDP-8 Modules PDP-8/E PDP-8 and Linc Family Tree PDP-8 12 bit word price (t) PDP-8 prices (t) Timesharing: given everyone their own, low cost, personal computer PDP-6 c1965 : First commercial time shared computer. Gbell & Alan Kotok PDP-6 Development team c1965 PDP-6/10/ DECsystem 10/20 family tree TThheerree iiss nnoo rreeaassoonn aannyyoonnee wwoouulldd wwaanntt aa ccoommppuutteerr iinn tthheeiirr hhoommee.
    [Show full text]
  • Thesis May Never Have Been Completed
    UvA-DARE (Digital Academic Repository) Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure Goodwin, D.T. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Goodwin, D. T. (2016). Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Sep 2021 Digital Equipment Corporation (DEC) (DEC) Corporation Digital Equipment David Thomas David Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin 1 Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.
    [Show full text]
  • Bell's Law of Computer Classes
    Bell’s Law; P,M,S Structures; Rules of thumb; and Taxonomies 1957-1998. 41 yrs. 4 generations: Tubes > transistors > ICs, VLSI (micros) > clusters - winner take all How computer classes form, evolve …and die (according to economically based laws) Gordon Bell Microsoft Research, Silicon Valley Laboratory References Moore’s Law http://www.computerhistory.org/semiconductor/timeline/1965-Moore.html Bell’s Law: http://research.microsoft.com/research/pubs/view.aspx?0rc=p&type=technical +report&id=1389 Bell, C. G., R. Chen and S. Rege, "The Effect of Technology on Near Term Computer Structures," Computer 2 (5) 29-38 (March/April 1972). IEEE History Center's Global History Network: http://ieeeghn.org/wiki/index.php/STARS:Rise_and_Fall_of_Minicomputers In retrospect…by 1971, the next 50 years of computing was established 1. Moore’s Law (1965) transistors/die double every 18 mos. 2. Intel 4004, Processor-on-a-chip (1971) Clearly, by 1978 16-bit processor-on-a-chip 3. Bell et al 1971 observation...computer evolution 1. Computers evolve at constant price (Moore’s Law) 2. Computer clases form every decade (Bell’s Law) New technology, manufacturers, uses and markets How I think about computers • P,M,S describes architectures i.e. the components and how they are interconnected and interact – Reveals structure (size, cost, performance, power, etc.) – Parallelism, bottlenecks, and rules of thumb – Functional evolution to compete with larger computers • Bell’s Law determines classes birth & death • Rules of thumb determine goodness • Taxonomies enumerate alternatives A Walk-Through Computer Architectures from The Largest & Fastest to the Digestible Computers have evolved from a bi-furcation of: • calculating (P) aka scientific and record keeping (M) aka commerce to • control (K), • interfacing (T/Transduction) including GUIs, NUI, and • Communication (L), switching (S) and networking (N) Every information carrier from greeting cards to phones is an embedded computer.
    [Show full text]
  • Oral History Interview with Joseph F. Traub
    An Interview with JOSEPH F. TRAUB OH 94 Conducted by William Aspray on 29 March 1985 Columbia University (New York, NY) Charles Babbage Institute The Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute 1 Joseph F. Traub Interview 29 March 1985 Abstract The main topic is institutions in computing. Traub begins by discussing why computer science has developed as a discipline at some institutions but not others. Institutions that are highlighted include Stanford, Berkeley, University of Pennsylvania, MIT, and Carnegie-Mellon. Traub discusses his experiences as chairman of the computer science departments at Carnegie-Mellon and later Columbia. Other topics include: industrial and government funding of computer science departments (in particular the role of the Advanced Research Projects Agency of the Defense Department); the relationships between academic centers, such as M.I.T., Stanford, Columbia, and Carnegie-Mellon; and the importance of educational institutions to regional centers of industrial computing. At the end of the interview Traub returns to a topic of his earlier interviews, his experiences at Bell and Watson Laboratories. 2 JOSEPH F. TRAUB INTERVIEW DATE: 29 March 1985 INTERVIEWER: William Aspray LOCATION: Columbia University (New York, NY) ASPRAY: This is a session on the 29th of March, 1985, with Joseph Traub in his office at Columbia University. It is the third in a series of interviews, and the main topic in this session is institutions in computing. Why don't we start by talking about why certain universities - Pennsylvania, Harvard, Columbia, which had strong early activities in computing - didn't develop into first-rate research and teaching centers in computer science? TRAUB: It seems to me that in each of the institutions, that have become the major centers one can usually identify one or two people who were responsible.
    [Show full text]
  • Oral History of Gordon Bell
    Oral History of Gordon Bell Oral History of Gordon Bell Interviewed by: Gardner Hendrie Corrected by CGB May 9, 2008 Recorded: June 23, 2005 San Francisco, California Interview 1, Transcript 1 CHM Reference number: X3202.2006 © 2005 Computer History Museum CHM Ref: X3202.2006 © 2005 Computer History Museum Page 1 of 171 Oral History of Gordon Bell Gardner Hendrie: We have Gordon Bell with us, who's very graciously agreed to do an oral history interview for the Computer History Museum. Thank you up front, Gordon, for doing that. Gordon Bell: Am happy to. Hendrie: What I would like to start with is maybe you could tell us a little bit about where you were born, your family, what your parents did, how many brothers and sisters you had, just a little background as to sort of where you were during your formative years. Bell: Great. I'm a fan of crediting everything to my parents and environment that I grew up in. I was born in Kirksville, Missouri, on August 19th, 1934. Kirksville was a college town and also a farming community, about 10,000 population, and had the Northeast Missouri State Teacher's College, which has now morphed itself into the Truman University. The town now has about 20,000 people. My father had an electrical contracting business and appliance store and did small appliance repair, and I grew up working at "the shop". My uncle was with him and had the refrigeration part of the business. And so I spent all my formative years at the shop and in that environment.
    [Show full text]
  • ALLEN NEWELL March 19, 1927–July 19, 1992
    NATIONAL ACADEMY OF SCIENCES A L L E N N E W ELL 1927—1992 A Biographical Memoir by HER BE R T A. S IMON Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. ALLEN NEWELL March 19, 1927–July 19, 1992 BY HERBERT A. SIMON ITH THE DEATH from cancer on July 19, 1992, of Allen WNewell the field of artificial intelligence lost one of its premier scientists, who was at the forefront of the field from its first stirrings to the time of his death and whose research momentum had not shown the slightest diminu- tion up to the premature end of his career. The history of his scientific work is partly my history also, during forty years of friendship and nearly twenty of collaboration, as well as the history of the late J. C. (Cliff) Shaw, a longtime colleague; but I will strive to make this account Allen-cen- tric and not intrude myself too far into it. I hope I will be pardoned if I occasionally fail.1 If you asked Allen Newell what he was, he would say, “I am a scientist.” He played that role almost every waking hour of every day of his adult life. How would he have answered the question, “What kind of scientist?” We hu- mans have long been obsessed with four great questions: the nature of matter, the origins of the universe, the nature of life, the workings of mind.
    [Show full text]
  • Computational Database Systems for Massive Scientific Datasets
    Computational Database Systems for Massive Scientific Datasets David O’Hallaron, Anastassia Ailamaki, and Gregory Ganger Carnegie Mellon University Pittsburgh, PA 15213 (This page will not be included in the submitted version) March 1, 2004 Proposal submitted to the National Science Foundation Directorate for Computer and Information Sciences and Engineering, SEIII Program Announcement (NSF 04-528), Division of Information and Intelligent Systems (IIS), Science and Engineering Informatics Cluster, -1 Part A Project Summary We propose to push the frontiers of scientists’ ability to explore and understand massive scientific datasets by devel- oping a new approach called computational database systems. The idea is to integrate scientific datasets stored as spatial databases with specialized, tightly-coupled, and highly-optimized functions that query and manipulate these databases. Doing so will simultaneously simplify domain-specific programming (since datasets are now in a form that can be queried generally) and greatly increase the scale of problems that can be studied efficiently (since the complete dataset no longer needs to fit into memory). Many scientific problems are constrained by the complexity of manipulating massive datasets. Recently, for example, a group of us at Carnegie Mellon received the Gordon Bell Prize for producing and simulating the largest unstructured finite element model ever. The model simulates ground motion during an earthquake in the Los Angeles basin across a mesh with over 1B nodes and elements. Although exciting, this achievement came with some painful lessons about the shortcomings of our current capabilities of dealing with massive datasets. In particular, the dataset that we generated for the Gordon Bell Prize has limited scientific value because it is too large to be queried and explored effectively, requiring heroic efforts just to extract a few waveforms for publication.
    [Show full text]
  • Larry Portner, Bob Puffer. Andy Knowles Was Important, Particularly in the Way We Worked, There Was Enormous Stress Between Marketing and Engineering
    DEC -- Gordon Bell, 6/28/91 EDITED AND APPROVED Tape 1, Page 1 GB: Probably you want [to get on tape] Larry Portner, Bob Puffer. Andy Knowles was important, particularly in the way we worked, there was enormous stress between marketing and engineering. The more you can try to center it into the different activities, the better off it is. Because it's a complex story, and you want to try to keep it that way and then talk about the interactions between the various forces. There is a way of doing it a little bit chronologically, too. When Glenn Rifkin approached me about his book he had an outline. He wanted to come interview. I said, "Vo, don't do that. I'd like to think a lot more about this. Why don't you give me every question you want and I will answer the questions and think about them in that context." I did that. He had an outline and I gave him comments on it, how I would organize it. There's a lot of stuff in here, essentially a lot of stories. As we go through the questions I'll try to remember it. He came back after that several times. [BELL HANDS OVER 20+ PAGES OF NOTES HE WROTE FOR RIFKIN'S BOOK.] I talked to Henry Burckhardt the other day, and I was out talking to Dave Cutler. Henry said, "Well, it turns aut it takes eight years to get it out of your system. You're just able to be calm about it now." So it's been roughly eight years, and eight days now since I left.
    [Show full text]
  • PDP-8 - Wikipedia, the Free Encyclopedia 1/22/12 1:06 PM PDP-8 from Wikipedia, the Free Encyclopedia (Redirected from Pdp8)
    PDP-8 - Wikipedia, the free encyclopedia 1/22/12 1:06 PM PDP-8 From Wikipedia, the free encyclopedia (Redirected from Pdp8) The 12-bit PDP-8 was the first successful commercial minicomputer, produced by Digital Equipment Corporation (DEC) in the 1960s. DEC introduced it on 22 March 1965, and sold more than 50,000 systems, the most of any computer up to that date.[1] It was the first widely sold computer in the DEC PDP series of computers (the PDP-5 was not originally intended to be a general-purpose computer). The chief engineer who designed the initial version of the PDP-8 was Edson de Castro, who later founded Data General.[2] The earliest PDP-8 model (informally known as a "Straight-8") used diode-transistor logic, packaged on flip chip cards, and was about the size of a minibar-fridge. This was followed by the PDP-8/S, available in desktop and rack-mount models. By using a one-bit serial ALU implementation, the PDP-8/S was smaller, less expensive, but vastly slower than the original PDP-8. The only mass storage peripheral available for the PDP-8/S was the A PDP-8 on display at the DF32 disk. Smithsonian's National Museum of American History in Washington, Later systems (the PDP-8/I and /L, the PDP-8/E, /F, and /M, and the D.C.. This example is from the first PDP-8/A) returned to a faster, fully parallel implementation but used generation of PDP-8s, built with much less-expensive TTL MSI logic.
    [Show full text]
  • ETHERNET and the FIFTH GENERATION Gordon Bell Vice
    THE ENGINEERING OF THE VAX-11 COMPUTING ENVIRONMENT The VAX-11 architectural design and implementation began in 1975 with the goals of a wide range of system sizes and different styles of use. While much of the implementation has been "as planned", various nodes (eg. computers, disk servers) and combined structures (eg. clusters) have evolved in response to the technology forces, user requirements and constraints. The future offers even more possibilities for interesting structures. ETHERNET AND THE FIFTH GENERATION Gordon Bell Vice President, Engineering Digital Equipment Corporation In the Fifth Computer Generation, a wide variety of computers will communicate with one another. No one argues about this. The concern is about how to do it and what form the computers will take. A standard communications language is the key. I believe Ethernet is this unifying key to the 5th computer generation because it interconnects all sizes and types of computers in a passive, tightly-coupled, high performance fashion, permiting the formation of local-area networks. HOW THE JAPANESE HAVE CONVERTED WORLD INDUSTRY INTO DISTRIBUTORSHIPS -- CONCERN NOW FOR SEMICONDUCTORS AND COMPUTERS Gordon Bell Vice President Digital Equipment Corporation Abstract We all must be impressed with the intense drive, technical and manufacturing ability of the Japanese. As an island with few natural resources, and only very bright, hard working people they have set about and accomplished the market domination of virtually all manufactured consumer goods and the components and processes to make these goods (i.e., vertical integration). Currently the U.S. has a dominant position in computers and semiconductors. However, there's no fundamental reason why the Japanese won't attain a basic goal to dominate these industries, given their history in other areas and helped by our governments.
    [Show full text]
  • Chester Gordon Bell
    Chester Gordon Bell Born August 19, 1934, Kirksville, Mo.; DEC designer of the PDP line of computers; with wife Gwen, founder of the Computer Museum, Boston. Education: BSEE, MIT, 1956; MSEE, MIT, 1957. Professional Experience: research engineer, Research Laboratory for Electronics, MIT, 1959-1961; manager, computer design, Digital Equipment Corp. 1961-1966; associate professor of computer science: Carnegie-Mellon University, 1966-1978; professor, electrical engineering and computer science, 1978; senior consultant, Stardent Computers, Sunnyvale, Calif. Honors and Awards: Mellon Institute Award, Carnegie Mellon University, 1973; fellow, IEEE, 1974; IEEE W. Wallace McDowell Award, 1975; National Academy of Engineering, 1977; IEEE Computer Society Pioneer Award, 1980; ACM/IEEE Eckert/Mauchly Award, 1982; National Medal of Technology, 1991; IEEE John von Neumann Medal, 1992. Bell's citation for the award of the IEEE Fellowship reads: “For contributions to the design of time-sharing computer systems, and for education in the understanding of computer structures.” Bell designed the first minicomputers and time-sharing computers at Digital Equipment Corp., and led the development of the company's VAX minicomputers. His other achievements include start-ups at Encore Computer, where he was responsible for one of the first multiple microprocessors, and at Ardent Computer, where he built the first graphics supercomputer. A director of several companies and a cofounder of the Computer Museum in Boston, Bell has received many prizes. President George Bush awarded him the National Medal of Technology “for his continuing intellectual and industrial achievements in the field of computer design, and for his leading role in establishing cost-effective, powerful computers that serve as a significant tool for engineering, science, and industry.” BIBLIOGRAPHY Biographical Slater, Robert, Portraits in Silicon, MIT Press, Cambridge, Mass., 1987, Chapter 19.
    [Show full text]