Genetic Identification of Loci for Hessian Fly Resistance in Durum Wheat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
John Percival
THE LINNEAN Wheat Taxonomy: the legacy of John Percival THE LINNEAN SOCIETY OF LONDON BURLINGTON HOUSE, PICCADILLY, LONDON WlJ OBF SPECIAL ISSUE No 3 2001 ACADEMIC PRESS LIMITED 32 Jam.estown Road London NWl 7BY Printed on acid free paper © 2001 The Linnean Society of London All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system without permission in writing from the publisher. The designations of geographic entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the publishers, the Linnean Society, the editors or any other participating organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of The Society, the editors, or other participating organisations. Printed in Great Britain. Wheat Taxonomy: the legacy of John Percival Conference Participants (most of whom are identified by number on the key to the group photograph above). I. M. Ambrose,; 2. J. Bingham, UK; 3. R. Blatter, Switzerland; 4. A. Bomer, Germany; 5. A. Brandolini Italy; 6. R. Brigden, UK; 7. A. H. Bunting, UK; 8. P. Caligari, UK; 9. E.M.L.P. Clauss, USA; 10. P.O. Clauss, USA; 11 . K. Clavel, France; 12. P. Davis, UK; 13. J. Dvohik, USA; 14. !. Faberova, Czech Republic; 15 . A. A. Filatenko, Russia; 16. -
Article on Genetic Markers for Bunt Resistance From
Let’s make grain great again Click here to sign up for the newsletter The Landrace Newsletter no. 5 May 2021 A new growing season is ahead of us, and I greet the spring with news from both future and past from the organic grain sector. I wish you joyfull reading Anders Borgen Content in this newsletter Open field day and general assembly in Landsorten, Tuesday 22. June..............................................2 But now then, is it Landsorten or Agrologica, selling organic seed in future?...................................2 Mobile stone mill for local production................................................................................................3 Nordic grain festival 28th-30th October 2021 in Norway.....................................................................4 News from Agrologica science lab......................................................................................................4 Genetic markers for bunt resistance - news from LIVESEED-, Økosort-II and bunt projects......4 Acid rain and gluten-index..............................................................................................................4 Zanduri, Macha, and the hailstorm in Georgia...............................................................................6 Colchic emmer (Triticum paleochochicum)...............................................................................6 Emmer........................................................................................................................................7 Durum........................................................................................................................................7 -
The Utilisation of Triticum and Aegilops Species for the Improvement of Durum Wheat
The utilisation of Triticum and Aegilops species for the improvement of durum wheat Monneveux P., Zaharieva M., Rekika D. in Royo C. (ed.), Nachit M. (ed.), Di Fonzo N. (ed.), Araus J.L. (ed.). Durum wheat improvement in the Mediterranean region: New challenges Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 40 2000 pages 71-81 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=600008 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Monneveux P., Zaharieva M., Rekika D. The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In : Royo C. (ed.), Nachit M. (ed.), Di Fonzo N. (ed.), Araus J.L. (ed.). Durum wheat improvement in the Mediterranean region: New challenges . Zaragoza : CIHEAM, 2000. p. 71-81 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 40) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -
Spontaneous Chromosome Substitutions in Hybrids of Triticum Aestivum with T. Araraticum Detected by C-Banding Technique
Number 80: 26 - 31 (1995) Spontaneous chromosome substitutions in hybrids of Triticum aestivum with T. araraticum detected by C-banding technique E.D. Badaeva and B.S. Gill Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Throckmorton Hall, Manhattan, KS 66506-5502, USA Abstract One hundred thirty-one plants representing twenty-nine families of Triticum aestivum cv. Wichita X T. araraticum hybrids were analyzed by the C-banding technique. Transfer of genetic material involved whole chromosome(s) or chromosome arms. Nine different types of chromosome substitution were found. The mean number of substitutions per karyotype was 1.86 (range 1-3). Substitutions involving G-genome chromosomes occurred more frequently than A' genome chromosomes. Individual chromosomes also differed in the frequency of substitution. The most frequently substituted chromosome was 6G, while substitutions with 1At, 2At, 4At, 6At, 7At, 3G, and 7G were not recovered. A recombinant (rec) 7AS-7AtL chromosome was identified. The spectrum of substitutions was different from those in other T. aestivum x T. timopheevii hybrids, indicating that the genotype of the parental species determines the pattern of substitutions in their hybrids. Introduction Triticum araraticum Jakubz. is a wild tetraploid wheat with the genome formula AtAtGG. Morphologically similar to T. dicoccoides, T. araraticum differs from it in karyotype structure (Badaeva et al. 1986; Gill and Chen 1987; Jiang and Gill 1994). At present, there is no consensus opinion on the origin of these two wheat species. According to one hypothesis, T. dicoccoides and T. araraticum were derived from the common ancestor by introgressive hybridization with unknown diploid species (Gill and Chen 1987). -
Invited ORIGINAL ARTICLE Genetic
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.10.426084; this version posted May 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Theoretical and Applied Genetics 2 3 SPECIAL ISSUE: Breeding towards Agricultural Sustainability - invited 4 ORIGINAL ARTICLE 5 6 7 Genetic diversity, distribution and domestication history of the neglected 8 GGAtAt genepool of wheat# 9 10 #We dedicate this article to our visionary colleagues Moshe Feldman and Francesco Salamini 11 12 13 Ekaterina D. Badaeva1,2,*, Fedor A. Konovalov3,4, Helmut Knüpffer4, Agostino Fricano5, 14 Alevtina S. Ruban4,6, Zakaria Kehel7, Svyatoslav A. Zoshchuk2, Sergei A. Surzhikov2, Kerstin 15 Neumann4, Andreas Graner4, Karl Hammer4, Anna Filatenko4,8, Amy Bogaard9, Glynis Jones10, 16 Hakan Özkan11, Benjamin Kilian4,12 17 18 19 1 – N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia 20 2 – Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia 21 3 – Independent Clinical Bioinformatics Laboratory, Moscow, Russia 22 4 – Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany 23 5 – Council for Agricultural Research and Economics – Research Centre for Genomics & 24 Bioinformatics, Fiorenzuola d’Arda (PC), Italy 25 6 – KWS SAAT SE & Co. KGaA, Einbeck, Germany 26 7 – International Center for the Agricultural Research in the Dry Areas (ICARDA), Rabat, 27 Morocco 28 8 – Independent Researcher, St. Petersburg, Russia 29 9 – School of Archaeology, Oxford, United Kingdom 30 10 – Department of Archaeology, University of Sheffield, United Kingdom 31 11 – Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey 32 12 – Global Crop Diversity Trust, Bonn, Germany 33 *Correspondence: Ekaterina D. -
Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for Its Improvement Jagdeep Singh Sidhu South Dakota State University
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2018 Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for its Improvement Jagdeep Singh Sidhu South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Plant Breeding and Genetics Commons Recommended Citation Sidhu, Jagdeep Singh, "Exploiting the Genetic Diversity of Wild Ancestors and Relatives of Wheat for its Improvement" (2018). Electronic Theses and Dissertations. 2641. https://openprairie.sdstate.edu/etd/2641 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. EXPLOITING THE GENETIC DIVERSITY OF WILD ANCESTORS AND RELATIVES OF WHEAT FOR ITS IMPROVEMENT BY JAGDEEP SINGH SIDHU A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2018 iii This thesis is dedicated to my respected father Mr. Amrik Singh Sidhu, mother Mrs. Harjit Kaur, my dear sister Sukhdeep Kaur and cute niece Samreet. iv ACKNOWLEDGEMENTS First of all, I am grateful to Dr. Sunish Sehgal for giving me an opportunity work in his winter breeding program. My master’s work would not have been possible without his love, help, support and encouragement. I truly respect Dr. -
Advances in Wheat Genetics: from Genome to Field Proceedings of the 12Th International Wheat Genetics Symposium Advances in Wheat Genetics: from Genome to Field
Yasunari Ogihara · Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Advances in Wheat Genetics: From Genome to Field Yasunari Ogihara • Shigeo Takumi Hirokazu Handa Editors Advances in Wheat Genetics: From Genome to Field Proceedings of the 12th International Wheat Genetics Symposium Editors Yasunari Ogihara Shigeo Takumi Kihara Institute for Biological Research Graduate School of Agricultural Sciences Yokohama City University Kobe University Yokohama , Kanagawa , Japan Kobe , Hyogo , Japan Hirokazu Handa Plant Genome Research Unit National Institute of Agrobiological Sciences Tsukuba , Ibaraki , Japan ISBN 978-4-431-55674-9 ISBN 978-4-431-55675-6 (eBook) DOI 10.1007/978-4-431-55675-6 Library of Congress Control Number: 2015949398 Springer Tokyo Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and the Author(s) 2015 . The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Non- commercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Sequence Diversity and Copy Number Variation of Mutator-Like Transposases in Wheat
Genetics and Molecular Biology, 31, 2, 539-546 (2008) Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Sequence diversity and copy number variation of Mutator-like transposases in wheat Nobuaki Asakura1, Shinya Yoshida2, Naoki Mori3, Ichiro Ohtsuka1 and Chiharu Nakamura3 1Laboratory of Biology, Faculty of Engineering, Kanagawa University, Yokohama, Japan. 2Hyogo Institute of Agriculture, Forestry & Fisheries, Kasai, Japan. 3Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan. Abstract Partial transposase-coding sequences of Mutator-like elements (MULEs) were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and di- vided into two distinct subclasses (subclass I and subclass II). The average pair-wise identity between members of both subclasses was 58.8% at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number ele- ments. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes be- fore polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. -
Transfer of Disease Resistance Genes from Triticum Araraticum to Common Wheat
Plant Breeding 116, 105-112 (1997) © 1997 Blackwell Wissenschafts-Verlag, Berlin ISSN 0179-9541 Transfer of disease resistance genes from Triticum araraticum to common wheat 1 2 3 4 G. L. BROWN-GUEDIRA , B. S. GILL , T. S. Cox , and S. LEATH I USDA-ARS, Plant Physiology and Genetics Research Unit, 234 EASB 1101 W. Peabody Drive, University of Illinois, Urabana, IL 61801, USA; 2Department of Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA; 3 USDA-ARS, Agronomy Department, Throckmorton Hall, Kansas State University, Manhattan, KS 66506, USA; 4 USDA-ARS, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA With 5 tables Received May 24, 1996/Accepted September 12,1996 Communicated by R. Koebner Abstract (McIntosh and Gyarfas 1971, Gill et al. 1983, Tomar et al. The wild tetraploid wheat species Triticum timopheevii (Zhuk.) Zhuk. 1988, Brown-Guedira et al. 1996). Cultivated T. timopheevii has var. araraticum is a source ofpest resistance genes for Triticum aestivum been used for wheat improvement to a greater extent than has L. Our objectives were to describe the breeding behaviour of T. ara its wild progenitor, T. araraticum. Because T. timopheevii is raticum when backcrossed to common wheat, and to transfer resistance a cultivated species, the chances of recovering agronomically to leaf rust (caused by Puccinia recondita f.sp. tritici) and powdery acceptable derivatives from crosses with wheat are greater. mildew (caused by Blumeria graminis f.sp. tritici) to wheat. Crosses were However, T. timopheevii is endemic to the country of Georgia made between five wheat genotypes and 12 T. -
Table 1: Wild and Cultivated Species of Triticum (Wheat) 45
Table 1: Wild and cultivated species of Triticum (wheat) English French German Distribution Remarks diploid (N=14) hulled wheats Triticum boeoticum Boiss. emend. Schiem. wild einkorn wheat engrain sauvage wildes Einkorn SE. Europe, W. Asia wild ancestor of T. T. boeoticum ssp. aegilopoides (Link.)Schiem. 1-grained wild einkorn Transcaucasia monococcum T. boeoticum ssp. thaoudar (Reuter) Schiem. 2-grained wild einkorn Triticum monococcum L. einkorn wheat (small spelt) engrain Einkorn locally grown widely cultivated in ancient times tetraploid (N=28) hulled wheats Triticum dicoccoides Körn wild emmer wheat amidonnier wilder Emmer Syro-Palestinian region wild ancestor of most sauvage tetraploid wheats Triticum araraticum Jakubz. wild emmer wheat Transcaucasia, N. Iran N. Iraq, E. Turkey Triticum dicoccum Schübl. emmer wheat amidonnier Emmer locally grown widely cultivated in ancient times. Triticum palaeocolchicum Men. Kolchic emmer wheat Georgia Triticum timopheevii Zhuk. Timopheevi wheat Georgia naked wheats Triticum durum Desf. hard wheat (macaroni wheat) blé dur Hartweizen Mediterranean the species identification Triticum turgium L. rivet wheat (poulard wheat) blé poulard Rauhweizen Mediterranean of archaeological naked Triticum persicum Vav. (=T. carthlicum Nevski) Persian wheat Persischer Weizen Iran, Iraq, Caucasis wheat remains (4x and 6x) is still a serious problem Triticum polonicum L. Polish wheat Polnischer Weizen S. Europe, Near Eeast, India Triticum turanicum Jacubz. (=T. orientale Perc.) Khorassan wheat Khorassan-Weizen Iran, Iraq restricted to irrigated fields Triticum parvicoccum Kislev extinct archaeobotanical species hexaploid (N=42) hulled wheats Triticum spelta L. spelt wheat épeautre Dinkel (Spelz) Iran, Europe Triticum macha Dekr. et Men. Makha wheat Georgia Triticum vavilovii (Tum.) Jakubz. Vavilov’s wheat Armenia naked wheats Triticum aestivum L (=T. -
Evolutionary History of Triticum Petropavlovskyi Udacz. Et Migusch
Evolutionary History of Triticum petropavlovskyi Udacz. et Migusch. Inferred from the Sequences of the 3-Phosphoglycerate Kinase Gene Qian Chen1,2., Hou-Yang Kang1., Xing Fan1, Yi Wang1, Li-Na Sha1, Hai-Qin Zhang1, Mei-Yu Zhong1, Li-Li Xu1, Jian Zeng3, Rui-Wu Yang4, Li Zhang4, Chun-Bang Ding4, Yong-Hong Zhou1,2* 1 Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People’s Republic of China, 2 Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People’s Republic of China, 3 College of Resources and Environment, Sichuan Agricultural University, Sichuan, People’s Republic of China, 4 College of Biology and Science, Sichuan Agricultural University, Sichuan, People’s Republic of China Abstract Single- and low-copy genes are less likely to be subject to concerted evolution. Thus, they are appropriate tools to study the origin and evolution of polyploidy plant taxa. The plastid 3-phosphoglycerate kinase gene (Pgk-1) sequences from 44 accessions of Triticum and Aegilops, representing diploid, tetraploid, and hexaploid wheats, were used to estimate the origin of Triticum petropavlovskyi. Our phylogenetic analysis was carried out on exon+intron, exon and intron sequences, using maximum likelihood, Bayesian inference and haplotype networking. We found the D genome sequences of Pgk-1 genes from T. petropavlovskyi are similar to the D genome orthologs in T. aestivum, while their relationship with Ae. tauschii is more distant. The A genome sequences of T. petropavlovskyi group with those of T. polonicum, but its Pgk-1 B genome sequences to some extent diverge from those of other species of Triticum. -
Proceedings of the First International Workshop on Hulled Wheats, 21-22 July 1995, Castelvecchio Pascoli, Tuscany, Italy
Proceedings of the First International Workshop on Hulled Wheats 21-22 July 1995 Castelvecchio Pascoli, Tuscany, Italy S. Padulosi, K. Hammer and J. Heller, editors ii HULLED WHEATS The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization operating under the aegis of the Consultative Group on International Agricultural Research (CGIAR). The international status of IPGRI is conferred under an Establishment Agreement which, by December 1995, had been signed by the Governments of Australia, Belgium, Benin, Bolivia, Burkina Faso, Cameroon, China, Chile, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Iran, Israel, Italy, Jordan, Kenya, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Ukraine and Uganda. IPGRI's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI works in partnership with other organizations, undertaking research, training and the provision of scientific and technical advice and information, and has a particularly strong programme link with the Food and Agriculture Organization of the United Nations. Financial support for the agreed research agenda of IPGRI is provided by the Governments of Australia, Austria, Belgium, Canada, China, Denmark, France, Germany, India, Italy, Japan, the Republic of Korea, Mexico, the Netherlands, Norway, Spain, Sweden, Switzerland, the UK and the USA, and by the Asian Development Bank, IDRC, UNDP and the World Bank. The Institute of Plant Genetics and Crop Plant Research (IPK) is operated as an independent foundation under public law. The foundation statute assigns to IPK the task of conducting basic research in the area of plant genetics and research on cultivated plants.